Displaying publications 61 - 80 of 157 in total

Abstract:
Sort:
  1. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Arecaceae/chemistry*
  2. Chen YW, Lee HV, Abd Hamid SB
    Carbohydr Polym, 2017 Feb 10;157:1511-1524.
    PMID: 27987863 DOI: 10.1016/j.carbpol.2016.11.030
    Cellulose in nanostructures was successfully isolated from empty fruit bunch biomass via a novel one-pot oxidative-hydrolysis technique. The physicochemical properties of nanocellulose prepared via one-pot process have shown comparable characteristics as products isolated via conventional multistep purification approach (namely dewaxing, chlorite bleaching process, alkalization, and acid hydrolysis). The chemical composition study indicated that the one-pot oxidative-hydrolysis process successfully extracted cellulose (91.0%), with the remaining minority being hemicellulose and lignin (∼6%) in the final product. Crystallinity profile of one-pot treated product (80.3%) was higher than that of multistep isolated nanocellulose (75.4%), which indicated that the disorder region (amorphous) in cellulose fibers was successfully removed. In additional to that, the morphology study demonstrated that nanocellulose prepared by one-pot process rendered spider-web-like network nanostructure, with an average diameter of fibers at a range of 51.6±15.4nm. The nanocellulose product showed high thermal stability (320°C), which was ready for nanocomposite application. One-pot oxidative-hydrolysis technique is a simple and versatile route for the preparation of nanocellulose from complex biomass within 90°C and 6h period, with minimum wastewater as compared to the multistep process.
    Matched MeSH terms: Arecaceae/chemistry*
  3. Zulkifli AN, Zakeri HA, Azmi WA
    J Insect Sci, 2018 Sep 01;18(5).
    PMID: 30285257 DOI: 10.1093/jisesa/iey093
    The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) is one of the most dangerous pests of major cultivated palms including coconut, oil palm, and sago. The larval stage of the weevil causes the most destruction of the palms as it completely destroys the palm cabbage. In this study, the larvae were given three different diets-coconut cabbage, oil palm cabbage, and sago stem, under laboratory conditions for food consumption and developmental time experiment. The protein profiles of the digestive systems of the larvae fed on these three diets were also determined. Although the coconut diet was the most consumed by RPW larvae compared to oil palm and sago diets, the growth rate of RPW larvae on oil palm diet was however significantly shorter than those on the coconut and sago diets: the RPW only need 1 mo and 9 d to complete the larval duration. Proteins profiling of eight 2-DE gel protein spots that range 50-20 kDa were identified by mass spectrometry sequence analysis. Based on the Matrix Science Software, the most dominant protein was cationic trypsin. However, based on the NCBI BLAST tool, aminopeptidase N was the most dominant enzyme. This finding can lead to the development of pest control strategies based on the antinutritional protease inhibitors as potential biocontrol agents. Urgent action to find effective control methods should be taken seriously as this weevil is presumed to be one of the serious pests of oil palm industry in Malaysia.
    Matched MeSH terms: Arecaceae/chemistry*
  4. Rajoo A, Ramanathan S, Mansor SM, Sasidharan S
    J Ethnopharmacol, 2021 Feb 10;266:113414.
    PMID: 32980488 DOI: 10.1016/j.jep.2020.113414
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants are crucial to healing numerous illnesses. Elaeis guineensis Jacq (family Arecaceae) is a medicinal plant traditionally used for the treatment of wounds.

    AIM OF THE STUDY: However, there are no scientific reports documented on the wound healing activities of this plant against Staphylococcus aureus infections in the Sprague Dawley male rat model. Thus, the present study was conducted to evaluate the wound healing potential of E. guineensis extract leaves.

    MATERIALS AND METHODS: The crude extract was prepared in 10% (w/w) ointment and evaluated for wound healing activity using excision and infected wound models in Sprague Dawley rats. The wound healing activity was evaluated from wound closure rate, CFU reduction, histological analysis of granulation tissue and matrix metalloprotease expression.

    RESULTS: The results show that the E. guineensis extract has potent wound healing ability, as manifest from improved wound closure and tissue regeneration supported by histopathological parameters. Assessment of granulation tissue every fourth day showed a significant reduction in the microbial count. The expression of matrix metalloproteinases was well correlated with the other results, hence confirming E. guineensis wound healing activity's effectiveness.

    CONCLUSIONS: E. guineensis enhanced infected wound healing in rats, thus supporting its traditional use.

    Matched MeSH terms: Arecaceae/chemistry*
  5. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

    Matched MeSH terms: Arecaceae/chemistry*
  6. Saleh MSM, Bukhari DAM, Siddiqui MJA, Kasmuri AR, Murugesu S, Khatib A
    Nat Prod Res, 2020 May;34(9):1341-1344.
    PMID: 30678487 DOI: 10.1080/14786419.2018.1560295
    Different extraction processes were employed to extract bioactive metabolites from Salacca zalacca flesh by a range of aqueous and organic solvents. The highest extraction yield was obtained by 50% ethanol extract of SE (73.18 ± 4.35%), whereas SFE_1 showed the lowest yield (0.42 ± 0.08%). All extracts were evaluated for in vitro α-glucosidase inhibitory activity, measured by their IC50 values in comparison to that of quercetin, the positive control (IC50 = 2.7 ± 0.7 μg/mL). The lowest α-glucosidase inhibitory activity was indicated by water extract of SE (IC50 = 724.3 ± 42.9 μg/mL) and the highest activity was demonstrated by 60% ethanol extract by UAE (IC50 = 16.2 ± 2.4 μg/mL). All extracts were analysed by GC-MS and identified metabolites like carbohydrates, fatty acids, organic acids, phenolic acids, sterols and alkane-based compounds etcetera that may possess the potential as α-glucosidase inhibitor and may attribute to the α-glucosidase inhibitory activity.
    Matched MeSH terms: Arecaceae/chemistry
  7. Lahijani P, Zainal ZA
    Bioresour Technol, 2011 Jan;102(2):2068-76.
    PMID: 20980143 DOI: 10.1016/j.biortech.2010.09.101
    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed.
    Matched MeSH terms: Arecaceae/chemistry*
  8. Zarei M, Ghanbari R, Tajabadi N, Abdul-Hamid A, Bakar FA, Saari N
    J Food Sci, 2016 Feb;81(2):C341-7.
    PMID: 26720491 DOI: 10.1111/1750-3841.13200
    Palm kernel cake protein was hydrolyzed with different proteases namely papain, bromelain, subtilisin, flavourzyme, trypsin, chymotrypsin, and pepsin to generate different protein hydrolysates. Peptide content and iron-chelating activity of each hydrolysate were evaluated using O-phthaldialdehyde-based spectrophotometric method and ferrozine-based colorimetric assay, respectively. The results revealed a positive correlation between peptide contents and iron-chelating activities of the protein hydrolysates. Protein hydrolysate generated by papain exhibited the highest peptide content of 10.5 mM and highest iron-chelating activity of 64.8% compared with the other hydrolysates. Profiling of the papain-generated hydrolysate by reverse phase high performance liquid chromatography fractionation indicated a direct association between peptide content and iron-chelating activity in most of the fractions. Further fractionation using isoelectric focusing also revealed that protein hydrolysate with basic and neutral isoelectric point (pI) had the highest iron-chelating activity, although a few fractions in the acidic range also exhibited good metal chelating potential. After identification and synthesis of papain-generated peptides, GGIF and YLLLK showed among the highest iron-chelating activities of 56% and 53%, whereas their IC50 were 1.4 and 0.2 μM, respectively.
    Matched MeSH terms: Arecaceae/chemistry*
  9. Ahmad H, Singh R, Ghosh AK
    Indian J Med Res, 2009 Aug;130(2):160-5.
    PMID: 19797813
    Sago (Metroxylin sagu) is one of the main sources of native starch. In Malaysia sago dishes are commonly eaten with sugar. However, other societies use sago as a staple food item instead of rice or potato. The study was undertaken to investigate the effect of ingestion of different physical forms of sago supplementation on plasma glucose and plasma insulin responses, as compared to the white bread supplementation in man, during resting condition.
    Matched MeSH terms: Arecaceae/chemistry*
  10. Vafaei A, Bin Mohamad J, Karimi E
    Nat Prod Res, 2019 Sep;33(17):2531-2535.
    PMID: 29527930 DOI: 10.1080/14786419.2018.1448810
    In this study the antioxidant and cytotoxicity activity of the Adonidia merrillii fruits were investigated using different solvent polarities (methanol, ethyl acetate and water). The results showed that the total phenolic and flavonoid contents of the methanolic extract was higher compare with other extract with respective values of 17.80 ± 0.45 mg gallic acid equivalents/g dry weight (DW) and 5.43 ± 0.33 mg rutin equivalents/g DW. Beside that The RP-HPLC analyses indicated the presence of gallic acid, pyrogallol, caffeic acid, vanillic acid, syringic acid, naringin and rutin. In the DPPH, NO2 and ABTS scavenging assays, the methanolic extract exhibited higher antioxidant activity as compared to the ethyl acetate and water extracts. The extracts exhibited moderate to weak cytotoxic activity in the assays using human hepatocytes (Chang liver cells) and NIH/3T3 (fibroblasts cell) cell lines. The findings showed the Adonidia merrillii fruit extracts to possess considerable antioxidant and cytotoxicity properties. The fruit, therefore, is a potential candidate for further work to discover antioxidant and cytotoxic drugs from natural sources.
    Matched MeSH terms: Arecaceae/chemistry*
  11. Zakaria MR, Norrrahim MN, Hirata S, Hassan MA
    Bioresour Technol, 2015 Apr;181:263-9.
    PMID: 25659104 DOI: 10.1016/j.biortech.2015.01.072
    Eco-friendly pretreatment methods for lignocellulosic biomass are being developed as alternatives to chemical based methods. Superheated steam (SHS), hot compressed water (HCW) and wet disk milling (WDM) were used individually and with combination to partially remove hemicellulose and alter the lignin composition of recalcitrant structure of oil palm mesocarp fiber (OPMF). The efficiency of the pretreatment methods was evaluated based on the chemical compositions altered, SEM analysis, power consumption and degree of enzymatic digestibility. Hemicellulose removal (94.8%) was more pronounced under HCW compared to SHS, due to maximal contact of water and production of acetic acid which enhanced further degradation of hemicellulose. Subsequent treatment with WDM resulted in defibrillation of OPMF and expansion of the specific surface area thus increasing the conversion of cellulose to glucose. The highest glucose yield was 98.1% (g/g-substrate) when pretreated with HCW (200 °C, 20 min) and WDM which only consumed 9.6 MJ/kg of OPMF.
    Matched MeSH terms: Arecaceae/chemistry
  12. Zakaria MR, Hirata S, Hassan MA
    Bioresour Technol, 2015 Jan;176:142-8.
    PMID: 25460995 DOI: 10.1016/j.biortech.2014.11.027
    The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process.
    Matched MeSH terms: Arecaceae/chemistry*
  13. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Arecaceae/chemistry*
  14. Rezk H, Nassef AM, Inayat A, Sayed ET, Shahbaz M, Olabi AG
    Sci Total Environ, 2019 Mar 25;658:1150-1160.
    PMID: 30677979 DOI: 10.1016/j.scitotenv.2018.12.284
    Fossil fuel depletion and the environmental concerns have been under discussion for energy production for many years and finding new and renewable energy sources became a must. Biomass is considered as a net zero CO2 energy source. Gasification of biomass for H2 and syngas production is an attractive process. The main target of this research is to improve the production of hydrogen and syngas from palm kernel shell (PKS) steam gasification through defining the optimal operating parameters' using a modern optimization algorithm. To predict the gaseous outputs, two PKS models were built using fuzzy logic based on the experimental data sets. A radial movement optimizer (RMO) was applied to determine the system's optimal operating parameters. During the optimization process, the decision variables were represented by four different operating parameters. These parameters include; temperature, particle size, CaO/biomass ratio and coal bottom ash (CBA) with their operating ranges of (650-750 °C), (0.5-1 mm), (0.5-2) and wt% (0.02-0.10), respectively. The individual and interactive effects of different combinations were investigated on the production of H2 and syngas yield. The optimized results were compared with experimental data and results obtained from Response Surface Methodology (RSM) reported in literature. The obtained optimal values of the operating parameters through RMO were found 722 °C, 0.92 mm, 1.72 and 0.06 wt% for the temperature, particle size, CaO/biomass ratio and coal bottom ash, respectively. The results showed that syngas production was significantly improved as it reached 65.44 vol% which was better than that obtained in earlier studies.
    Matched MeSH terms: Arecaceae/chemistry*
  15. Faseleh Jahromi M, Shokryazdan P, Idrus Z, Ebrahimi R, Liang JB
    PLoS One, 2017;12(9):e0184553.
    PMID: 28880894 DOI: 10.1371/journal.pone.0184553
    Palm kernel cake (PKC) is the main byproduct from the palm oil industry in several tropical countries that contains considerable amounts of oligosaccharide. We earlier demonstrated beneficial prebiotic effects of oligosaccharides extract of PKC (OligoPKC) in starter and finisher broiler birds. This study was envisaged to elucidate the effects of in ovo and/or oral administration of the OligoPKC on prenatal and post-hatched broiler chicks. A total of 140 broiler (Cobb500) eggs were randomly divided into two groups (n = 70 each), and on day 12 of incubation, eggs in one group received in ovo injection of 0.1 mL (containing 20 mg) of OligoPKC, while those in the other group received 0.1 mL of saline (placebo) solution. Of these in ovo placebo or OligoPKC injected eggs, after hatching, six chicks from each group were sampled for day-one analysis, while 48 chicks from each group were randomly allocated to two dietary regimes involving either no feeding or feeding of OligoPKC through basal diet for a 14 days experiment forming the experimental groups as: (i) saline-injected (Control, C), (ii) OligoPKC-injected (PREBovo), (iii) saline-injected, but fed 1% OligoPKC (PREBd), and (iv) OligoPKC-injected and also 1% OligoPKC (PREBovo+d). In ovo injection of prebiotic OligoPKC had no effect on body weight and serum immunoglobulins concentrations of day old chicks, except for IgG, which was increased significantly (P<0.05). Body weight and feed conversion ratio of 14 days old chicks were neither affected by in ovo injection nor feeding of OligoPKC. However, populations of cecal total bacteria and major beneficial bacteria of the chicks were markedly enhanced by feeding of OligoPKC (PREBd and PREBovo+d > C and PREBovo), but lesser influenced by in ovo OligoPKC injection. Irrespective of its prior in ovo exposure, chicks fed OligoPKC diets had lower population of pathogenic bacteria. Overall serum immunoglobulin status of birds was improved by feeding of OligoPKC but in ovo OligoPKC injection had minor effect on that. In most cases, in ovo OligoPKC injection and feeding of OligoPKC reduced the expression of nutrient transporters in the intestine and improved antioxidant capacity of liver and serum. It is concluded that in ovo injection of OligoPKC increased IgG production and antioxidant capacity in serum and liver of prenatal chicks and had limited carrying-over effects on the post-hatched chicks comparing to the supplementary feeding of OligoPKC.
    Matched MeSH terms: Arecaceae/chemistry*
  16. Owolabi AF, Haafiz MK, Hossain MS, Hussin MH, Fazita MR
    Int J Biol Macromol, 2017 Feb;95:1228-1234.
    PMID: 27836655 DOI: 10.1016/j.ijbiomac.2016.11.016
    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds.
    Matched MeSH terms: Arecaceae/chemistry*
  17. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Arecaceae/chemistry
  18. Che Zain MS, Lee SY, Nasir NM, Fakurazi S, Shaari K
    Molecules, 2020 Nov 30;25(23).
    PMID: 33265992 DOI: 10.3390/molecules25235636
    Oil palm (Elaeis guineensis Jacq.) leaflets (OPLs) are one of the major agricultural by-products generated from the massive cultivation of Malaysian palm oil. This biomass is also reported to be of potential value based on its health-improving effects. By employing proton nuclear magnetic resonance (1H-NMR) spectroscopy combined with multivariate data analysis (MVDA), the metabolite profile of OPLs was characterized and correlated with their antioxidant and wound healing properties. Principal component analysis (PCA) classified four varieties of extracts, prepared using solvents ranging from polar to medium polarity, into three distinct clusters. Cumulatively, six flavonoids, eight organic acids, four carbohydrates, and an amine were identified from the solvent extracts. The more polar extracts, such as, the ethyl acetate-methanol, absolute methanol, and methanol-water, were richer in phytochemicals. Based on partial least square (PLS) analysis, the constituents in these extracts, such as (+)-catechin, (-)-epicatechin, orientin, isoorientin, vitexin, and isovitexin, were strongly correlated with the measured antioxidant activities, comprising ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and nitric oxide (NO) free radical scavenging activities, as well as with cell proliferation and migration activities. This study has provided crucial evidence on the importance of these natural antioxidant compounds on the wound healing properties of OPL.
    Matched MeSH terms: Arecaceae/chemistry*
  19. Chen WL, Tang SGH, Jahromi MF, Candyrine SCL, Idrus Z, Abdullah N, et al.
    Poult Sci, 2019 Jan 01;98(1):56-68.
    PMID: 30137571 DOI: 10.3382/ps/pey366
    The potential use of palm kernel expeller (PKE) as an alternative energy source in broiler diets is limited by the high fiber content. Although enzymatic treatment could alleviate the fiber component and increase the nutritive value of PKE, this apparent improvement is not reflected in the growth response of birds fed with the treated-PKE. As chicken's ceca are the most heavily populated with microflora within their gastrointestinal tract, it was hypothesized that any modulation of the intestinal environment by dietary treatments should be reflected by the composition and activities of the cecal microflora. There is a correlation between cecal microbiota composition and the efficiency of the host to extract energy from the diet and to deposit that energy into improved feed conversion ratio. At present, little is known about the changes on cecal microflora of broilers fed with PKE diets. Hence, this study was designed to assess the effects of feeding different forms of PKE; namely untreated PKE (UPKE), enzyme-treated PKE (EPKE), and oligosaccharides extracted from PKE (OligoPKE), on the cecal microbiota of broiler chickens at 14 d old (day 14) and 28 d old (day 28) using 16S rRNA gene high-throughput next-generation sequencing method. The results showed that temporal changes in cecal microbiota of broiler chickens were evident on day 14 and day 28. The relative abundance of phylum Firmicutes, known to be involved in nutrient uptake and absorption in both age groups was higher in the UPKE as compared to EPKE group. In addition, supplementation of OligoPKE increased (P < 0.05) the relative abundance of Lactobacillus on both D14 and D28, signifying its effect as prebiotics in enhancing growth of indigenous Lactobacillus. Our results showed that cecal microbiota was significantly modulated by dietary treatments and that the lower relative abundance of phylum Firmicutes in chickens fed with EPKE could be a reason why broiler chickens fed with EPKE of higher metabolizable energy (ME) content did not show improvement in their growth performance.
    Matched MeSH terms: Arecaceae/chemistry
  20. Omar FN, Hanipah SH, Xiang LY, Mohammed MAP, Baharuddin AS, Abdullah J
    J Mech Behav Biomed Mater, 2016 09;62:106-118.
    PMID: 27183430 DOI: 10.1016/j.jmbbm.2016.04.043
    Experimental and numerical investigation was conducted to study the micromechanics of oil palm empty fruit bunch fibres containing silica bodies. The finite viscoelastic-plastic material model called Parallel Rheological Network model was proposed, that fitted well with cyclic and stress relaxation tensile tests of the fibres. Representative volume element and microstructure models were developed using finite element method, where the models information was obtained from microscopy and X-ray micro-tomography analyses. Simulation results showed that difference of the fibres model with silica bodies and those without ones is larger under shear than compression and tension. However, in comparison to geometrical effect (i.e. silica bodies), it is suggested that ultrastructure components of the fibres (modelled using finite viscoelastic-plastic model) is responsible for the complex mechanical behaviour of oil palm fibres. This can be due to cellulose, hemicellulose and lignin components and the interface behaviour, as reported on other lignocellulosic materials.
    Matched MeSH terms: Arecaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links