METHODS: This human postprandial study evaluated 3 edible fat blends with differing polyunsaturated to saturated fatty acids (P/S) ratios (POL = 0.27, AHA = 1.00, PCAN = 1.32). A cross-over design included mildly hypercholestrolemic subjects (9 men and 6 women) preconditioned on test diets fats at 31% energy for 7 days prior to the postprandial challenge on the 8th day with 50 g test fat. Plasma lipids and lipoproteins were monitored at 0, 1.5, 3.5, 5.5 and 7 hr.
RESULTS: Plasma triacylglycerol (TAG) concentrations in response to POL, AHA or PCAN meals were not significant for time x test meal interactions (P > 0.05) despite an observed trend (POL > AHA > PCAN). TAG area-under-the-curve (AUC) increased by 22.58% after POL and 7.63% after PCAN compared to AHA treatments (P > 0.05). Plasma total cholesterol (TC) response was not significant between meals (P > 0.05). Varying P/S ratios of test meals significantly altered prandial high density lipoprotein-cholesterol (HDL-C) concentrations (P AHA > PCAN). Paired comparisons was significant between POL vs PCAN (P = 0.009) but not with AHA or between AHA vs PCAN (P > 0.05). A significantly higher HDL-C AUC for POL vs AHA (P = 0.015) and PCAN (P = 0.001) was observed. HDL-C AUC increased for POL by 25.38% and 16.0% compared to PCAN and AHA respectively. Plasma low density lipoprotein-cholesterol (LDL-C) concentrations was significant (P = 0.005) between meals and significantly lowest after POL meal compared to PCAN (P = 0.004) and AHA (P > 0.05) but not between AHA vs PCAN (P > 0.05). AUC for LDL-C was not significant between diets (P > 0.05). Palmitic (C16:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids in TAGs and cholesteryl esters were significantly modulated by meal source (P
OBJECTIVES: (1) To compare the concentrations of biomarkers of inflammation, endothelial activation and oxidative stress in subjects with low HDL-c compared to normal HDL-c; (2) To examine the association and correlation between HDL-c and these biomarkers and (3) To determine whether HDL-c is an independent predictor of these biomarkers.
METHODS: 422 subjects (mean age±SD = 43.2±11.9 years) of whom 207 had low HDL-c concentrations (HDL-c <1.0 mmol/L and <1.3 mmol/L for males and females respectively) and 215 normal controls (HDL-c ≥1.0 and ≥1.3 mmol/L for males and females respectively) were recruited in this study. The groups were matched for age, gender, ethnicity, smoking status, diabetes mellitus and hypertension. Fasting blood samples were collected for analysis of biomarkers of inflammation [high-sensitivity C-reactive protein (hsCRP) and Interleukin-6 (IL-6)], endothelial activation [soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble Intercellular Adhesion Molecule-1 (sICAM-1) and E-selectin)] and oxidative stress [F2-Isoprostanes, oxidized Low Density Lipoprotein (ox-LDL) and Malondialdehyde (MDA)].
RESULTS: Subjects with low HDL-c had greater concentrations of inflammation, endothelial activation and oxidative stress biomarkers compared to controls. There were negative correlations between HDL-c concentration and biomarkers of inflammation (IL-6, p = 0.02), endothelial activation (sVCAM-1 and E-selectin, p = 0.029 and 0.002, respectively), and oxidative stress (MDA and F2-isoprostane, p = 0.036 and <0.0001, respectively). Multiple linear regression analysis showed HDL-c as an independent predictor of IL-6 (p = 0.02) and sVCAM-1 (p<0.03) after correcting for various confounding factors.
CONCLUSION: Low serum HDL-c concentration is strongly correlated with enhanced status of inflammation, endothelial activation and oxidative stress. It is also an independent predictor for enhanced inflammation and endothelial activation, which are pivotal in the pathogenesis of atherosclerosis and atherosclerosis-related complications.
METHODS: We recruited a total of 156 individuals with central obesity, aged 25-45 years, with waist circumference ≥ 90 cm for men and ≥ 80 cm for women in a parallel single-blind 3-arm randomised controlled trial. The participants consumed isocaloric diets (~ 2400 kcal) enriched with respective test fats (RPOO, EVCO or EVOO) for a 12-week duration.
RESULTS: The mean of the primary outcome plasma high sensitivity C-reactive protein was statistically similar between the three diets after a 12-week intervention. EVOO resulted in significantly lower mean LDL cholesterol compared with RPOO and EVCO, despite similar effects on LDL and HDL cholesterol subfractions. The RPOO diet group showed elevated mean α and β -carotenes levels compared with EVCO and EVOO diet groups (P
SUBJECTS/METHODS: We used a cross-over designed feeding trial in 53 healthy Asian men and women (20-50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose.
RESULTS: Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0-2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05).
CONCLUSION: Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis.