Displaying publications 61 - 80 of 283 in total

Abstract:
Sort:
  1. Alam MZ, Fakhru'l-Razi A, Molla AH
    J Environ Sci (China), 2004;16(1):132-7.
    PMID: 14971468
    This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%-5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation (formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration (filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.
    Matched MeSH terms: Fungi*
  2. Masran R, Zanirun Z, Bahrin EK, Ibrahim MF, Lai Yee P, Abd-Aziz S
    Appl Microbiol Biotechnol, 2016 Jun;100(12):5231-46.
    PMID: 27115758 DOI: 10.1007/s00253-016-7545-1
    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process.
    Matched MeSH terms: Fungi/metabolism
  3. Chapman HC, Lacey LA, Yap HH
    J Am Mosq Control Assoc, 1987 Jun;3(2):306-8.
    PMID: 2904951
    Matched MeSH terms: Fungi/isolation & purification
  4. Yeo FK, Hensel G, Vozábová T, Martin-Sanz A, Marcel TC, Kumlehn J, et al.
    Theor Appl Genet, 2014 Feb;127(2):325-37.
    PMID: 24247233 DOI: 10.1007/s00122-013-2221-7
    KEY MESSAGE: We developed 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. Nonhost and partial resistance to Puccinia rust fungi in barley are polygenically inherited. These types of resistance are principally prehaustorial, show high diversity between accessions of the plant species and are genetically associated. To study nonhost and partial resistance, as well as their association, candidate gene(s) for resistance must be cloned and tested in susceptible material where SusPtrit would be the line of choice. Unfortunately, SusPtrit is not amenable to Agrobacterium-mediated transformation. Therefore, a doubled haploid (DH) mapping population (n = 122) was created by crossing SusPtrit with Golden Promise to develop a 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. We identified nine genomic regions occupied by resistance quantitative trait loci (QTLs) against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). Four DHs were selected for an Agrobacterium-mediated transformation efficiency test. They were among the 12 DH lines most susceptible to the tested non-adapted rust fungi. The most efficiently transformed DH line was SG062N (11-17 transformants per 100 immature embryos). The level of non-adapted rust infection on SG062N is either similar to or higher than the level of infection on SusPtrit. Against Ph.1.2.1, the latency period conferred by SG062N is as short as that conferred by SusPtrit. SG062N, designated 'Golden SusPtrit', will be a valuable experimental line that could replace SusPtrit in nonhost and partial resistance studies, especially for stable transformation using candidate genes that may be involved in rust-resistance mechanisms.
    Matched MeSH terms: Fungi/pathogenicity*
  5. McGuire KL, D'Angelo H, Brearley FQ, Gedallovich SM, Babar N, Yang N, et al.
    Microb Ecol, 2015 May;69(4):733-47.
    PMID: 25149283 DOI: 10.1007/s00248-014-0468-4
    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.
    Matched MeSH terms: Fungi/physiology*
  6. Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T
    Biomed Res Int, 2017 03 28;2017:2195808.
    PMID: 28459056 DOI: 10.1155/2017/2195808
    Matched MeSH terms: Fungi/enzymology*
  7. Ahluwalia HS, Lie KJ, Arulambalam TR
    J Trop Med Hyg, 1974 May;77(5):116-8.
    PMID: 4835327
    Matched MeSH terms: Fungi*
  8. Nawawi WMFW, Lee KY, Kontturi E, Bismarck A, Mautner A
    Int J Biol Macromol, 2020 Apr 01;148:677-687.
    PMID: 31954796 DOI: 10.1016/j.ijbiomac.2020.01.141
    The structural component of fungal cell walls comprises of chitin covalently bonded to glucan; this constitutes a native composite material (chitin-glucan, CG) combining the strength of chitin and the toughness of glucan. It has a native nano-fibrous structure in contrast to nanocellulose, for which further nanofibrillation is required. Nanopapers can be manufactured from fungal chitin nanofibrils (FChNFs). FChNF nanopapers are potentially applicable in packaging films, composites, or membranes for water treatment due to their distinct surface properties inherited from the composition of chitin and glucan. Here, chitin-glucan nanofibrils were extracted from common mushroom (Agaricus bisporus) cell walls utilizing a mild isolation procedure to preserve the native quality of the chitin-glucan complex. These extracts were readily disintegrated into nanofibre dimensions by a low-energy mechanical blending, thus making the extract dispersion directly suitable for nanopaper preparation using a simple vacuum filtration process. Chitin-glucan nanopaper morphology, mechanical, chemical, and surface properties were studied and compared to chitin nanopapers of crustacean (Cancer pagurus) origin. It was found that fungal extract nanopapers had distinct physico-chemical surface properties, being more hydrophobic than crustacean chitin.
    Matched MeSH terms: Fungi/chemistry
  9. Sivapragasam M, Moniruzzaman M, Goto M
    Biotechnol J, 2020 Apr;15(4):e1900073.
    PMID: 31864234 DOI: 10.1002/biot.201900073
    Ionic liquids (ILs), a class of materials with unique physicochemical properties, have been used extensively in the fields of chemical engineering, biotechnology, material sciences, pharmaceutics, and many others. Because ILs are very polar by nature, they can migrate into the environment with the possibility of inclusion in the food chain and bioaccumulation in living organisms. However, the chemical natures of ILs are not quintessentially biocompatible. Therefore, the practical uses of ILs must be preceded by suitable toxicological assessments. Among different methods, the use of microorganisms to evaluate IL toxicity provides many advantages including short generation time, rapid growth, and environmental and industrial relevance. This article reviews the recent research progress on the toxicological properties of ILs toward microorganisms and highlights the computational prediction of various toxicity models.
    Matched MeSH terms: Fungi/drug effects
  10. Lakhundi S, Siddiqui R, Khan NA
    Microb Pathog, 2017 Mar;104:97-109.
    PMID: 27998732 DOI: 10.1016/j.micpath.2016.12.013
    Microbial keratitis is a sight-threatening ocular infection caused by bacteria, fungi, and protist pathogens. Epithelial defects and injuries are key predisposing factors making the eye susceptible to corneal pathogens. Among bacterial pathogens, the most common agents responsible for keratitis include Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumonia and Serratia species. Fungal agents of corneal infections include both filamentous as well as yeast, including Fusarium, Aspergillus, Phaeohyphomycetes, Curvularia, Paecilomyces, Scedosporium and Candida species, while in protists, Acanthamoeba spp. are responsible for causing ocular disease. Clinical features include redness, pain, tearing, blur vision and inflammation but symptoms vary depending on the causative agent. The underlying molecular mechanisms associated with microbial pathogenesis include virulence factors as well as the host factors that aid in the progression of keratitis, resulting in damage to the ocular tissue. The treatment therefore should focus not only on the elimination of the culprit but also on the neutralization of virulence factors to minimize the damage, in addition to repairing the damaged tissue. A complete understanding of the pathogenesis of microbial keratitis will lead to the rational development of therapeutic interventions. This is a timely review of our current understanding of the advances made in this field in a comprehensible manner. Coupled with the recently available genome sequence information and high throughput genomics technology, and the availability of innovative approaches, this will stimulate interest in this field.
    Matched MeSH terms: Fungi/physiology
  11. Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, et al.
    Biomed Res Int, 2017;2017:1272193.
    PMID: 28280725 DOI: 10.1155/2017/1272193
    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.
    Matched MeSH terms: Fungi/enzymology*
  12. Munck C, Thierry E, Gräßle S, Chen SH, Ting ASY
    J Environ Manage, 2018 May 15;214:261-266.
    PMID: 29533823 DOI: 10.1016/j.jenvman.2018.03.025
    The isolate Coriolopsis sp. (1c3) was cultured on muslin cloth to induce formation of filamentous biofilm. The biofilm and the free-mycelium forms (control) were then used to treat two triphenylmethane dyes; Cotton Blue (CB) and Crystal Violet (CV). The biofilm comprised primarily of a compact mass of mycelium while sparse mycelium network was detected in free-mycelium forms. Results revealed significant decolourization activities by filamentous biofilm of 1c3 for CB (79.6%) and CV (85.1%), compared to free-mycelium forms (72.6 and 58.3%, for CB and CV, respectively). Biodegradation occurred in both biofilm and free-mycelium forms. FTIR spectra revealed that biofilm formation (stacking of mycelium), did not have severe implications to the number and types of functional groups available for dye biosorption. The findings here suggested that formation of biofilm in 1c3 was induced effectively on muslin cloth, leading to enhanced decolourization activities. This technology is simple, feasible and can be adopted and further improved to obtain biofilm to enhance their dye removal efficiency in aqueous solutions.
    Matched MeSH terms: Fungi*
  13. Al-Amiery AA, Kadhum AA, Mohamad AB
    Molecules, 2012 May 14;17(5):5713-23.
    PMID: 22628043 DOI: 10.3390/molecules17055713
    Newly synthesized coumarins 4-((5-mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)-methoxy)-2H-chromen-2-one and 4-((5-(phenylamino)-1,3,4-thiadiazol-2-yl)-methoxy)-2H-chromen-2-one were tested against selected types of fungi and showed significant activities. DFT calculations of the synthesized coumarins were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.
    Matched MeSH terms: Fungi/drug effects*
  14. Seena S, Duarte S, Pascoal C, Cássio F
    PLoS One, 2012;7(4):e35884.
    PMID: 22558256 DOI: 10.1371/journal.pone.0035884
    The worldwide-distributed aquatic fungus Articulospora tetracladia Ingold is a dominant sporulating species in streams of the Northwest Iberian Peninsula. To elucidate the genetic diversity of A. tetracladia, we analyzed isolates collected from various types of plant litter or foam in streams from North and Central Portugal and North Spain, between 2000 and 2010. Genetic diversity of these fungal populations was assessed by denaturing gradient gel electrophoresis (DGGE) fingerprints and by using ITS1-5.8S-ITS2 barcodes. Moreover, ITS1-5.8S-ITS2 barcodes of A. tetracladia reported in other parts of the world (Central Europe, United Kingdom, Canada, Japan and Malaysia) were retrieved from the National Center for Biotechnology (NCBI) and the National Institute of Technology and Evaluation Biological Resource Center (NBRC) to probe into genetic diversity of A. tetracladia. PCR-DGGE of ITS2 region of 50 Iberian fungal isolates distinguished eight operational taxonomic units (OTUs), which were similar to those obtained from neighboring trees based on ITS2 gene sequences. On the other hand, ITS1-5.8S-ITS2 barcodes of 68 fungal isolates yielded nine OTUs, but five fungal isolates were not assigned to any of these OTUs. Molecular diversity was highest for OTU-8, which included only European isolates. Two haplotypes were observed within OTU-8 and OTU-9, while only one haplotype was found within each of the remaining OTUs. Malaysia did not share haplotypes with other countries. Overall results indicate that, apart from the Malaysian genotypes, A. tetracladia genotypes were geographically widespread irrespective of sampling time, sites or substrates. Furthermore, PCR-DGGE appeared to be a rapid tool for assessing intraspecific diversity of aquatic hyphomycetes.
    Matched MeSH terms: Mitosporic Fungi/classification; Mitosporic Fungi/genetics*; Mitosporic Fungi/isolation & purification
  15. Ng KP, Soo-Hoo TS, Na SL, Tay ST, Hamimah H, Lim PC, et al.
    Mycopathologia, 2005 Jun;159(4):495-500.
    PMID: 15983734
    Hortaea werneckii is an environmental dematiaceous fungus found in the halophilic environment. It causes tinea nigra. We report the isolation of H. werneckii from blood and splenic abscess of two patients with acute myelomonocytic leukaemia. H. werneckii grew at room temperature but not at 37 degrees C, it was identified by biochemical tests, growth characteristics and the presence of conspicuous collarette intercalary on dividing yeast cells. The use of specific oligonucleotide primer Hor-F (5'-TGGACACCTTCA TAACTCTTG-3') and Hor-R (5'-TCACAACGCTTAGAGACGG-3') confirmed the two isolates were H. werneckii. The sequence for 281 nucleotide of HW299 and HW403 were 99% identical but differed only in one nucleotide. In vitro anti-fungal susceptibility testing showed that the isolates were resistant to amphotericin B and flucytosine.
    Matched MeSH terms: Mitosporic Fungi/genetics*; Mitosporic Fungi/isolation & purification*; Mitosporic Fungi/ultrastructure
  16. Afzali SF, Mohd Daud HH, Sharifpour I, Afsharnasab M, Shankar S
    Vet World, 2015 Sep;8(9):1038-44.
    PMID: 27047195 DOI: 10.14202/vetworld.2015.1038-1044
    Epizootic ulcerative syndrome (EUS) causes by aquatic oomycete fungus, Aphanomyces invadans is a dangerous fish disease of a wide range of fresh and brackish water, wild and farmed fish throughout the world. The objective of the present study was to determine the susceptibility of a number of tropical fish species to the EUS and compare the severity of infection between experimental groups.
    Matched MeSH terms: Fungi
  17. Seena S, Bärlocher F, Sobral O, Gessner MO, Dudgeon D, McKie BG, et al.
    Sci Total Environ, 2019 Apr 15;661:306-315.
    PMID: 30677678 DOI: 10.1016/j.scitotenv.2019.01.122
    Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiversity and biogeochemical processes. Here we report on the first large-scale study of biodiversity of leaf-litter fungi in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal communities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S. Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community composition of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is critical to unravel the global patterns of aquatic fungal diversity.
    Matched MeSH terms: Fungi
  18. Nasaruddin N, Jinap S, Samsudin NI, Kamarulzaman NH, Sanny M
    J Sci Food Agric, 2021 Mar 30;101(5):1812-1821.
    PMID: 32893877 DOI: 10.1002/jsfa.10795
    BACKGROUND: Corn, a main feed ingredient in the livestock industry, is one of the most susceptible crops to fungal infection and aflatoxin contamination. Livestock feeding on aflatoxin (AF)-contaminated feed have been shown to experience feed refusal, and decreased growth rate, milk production, and feed efficiency. In poultry, AF poisoning causes weight loss, poor feed efficiency, and reduced egg production and egg weight. The present work therefore aimed to determine the prevalence of mycotoxigenic fungi and the occurrence of AF contamination along the integrated corn-based poultry feed supply chain in Malaysia. A total of 51 samples were collected from different points along the feed supply chain from integrated poultry feed companies. The samples were subjected to mycological analyses (fungal isolation, enumeration, identification), and AFs were quantified by high-performance liquid chromatography equipped with a fluorescence detector (HPLC-FLD).

    RESULTS: Samples collected from sampling point 1 (company A) and sampling point 9 (company B) yielded the highest total fungal load (>log 4 CFU g-1 ). The prevalent fungal genera isolated were Aspergillus, Fusarium, and Penicillium spp. Aflatoxin B1 was detected in 8.3% of corn samples, and 7.4% of corn-based poultry feed samples along the feed supply chain, whereas AFs B2 , G1 , and G2 were not detected.

    CONCLUSION: The incidence of mycotoxigenic fungi along the integrated poultry feed supply chain warrant continuous monitoring of mycotoxin contamination to reduce the exposure risk of mycotoxin intake in poultry. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Fungi/classification; Fungi/isolation & purification; Fungi/metabolism
  19. Ikmal Misnal MF, Redzuan N, Firdaus Zainal MN, Raja Ibrahim RK, Ahmad N, Agun L
    Chemosphere, 2021 Jul;274:129972.
    PMID: 33979941 DOI: 10.1016/j.chemosphere.2021.129972
    Future demand of rice is projected to increase with the increase of global population. However, the presence of bacteria, insects, and fungi has resulted in various changes in the physical and chemical characteristics of rice grain. To make it worse, the overuse of post-harvest chemicals (fungicide and pesticide) has caused possible risks to human health through either occupational or non-occupational exposure. For the last few years, cold plasma has been developed as an alternative non-thermal emerging technology for rice grains treatment due to its ability to inactivate or decontaminate pathogens without causing thermal damage and free of any harmful residues. Therefore, this review describes the operational mechanism of cold plasma treatment technology on rice grains, existing reactor system designs, and parameters influenced by the treatment technology (reactor design parameters and treatment process parameters). Possible advanced investigation on future reactor design modification as well as standard operating range of influenced parameters were suggested for improved efficiency and effectiveness of cold plasma treatment.
    Matched MeSH terms: Fungi
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links