Displaying publications 61 - 80 of 148 in total

Abstract:
Sort:
  1. Husham, M., Hassan, Z., Ahmed A. Al-Dulaimi
    Science Letters, 2016;11(2):11-14.
    MyJurnal
    Nanocrystalline lead sulfide (PbS) thin films have been successfully grown on glass substrate using the chemical bath deposition technique. Microwave oven was used as a heating source to facilitate the growth process of the thin films. Aqueous solutions of lead nitrate Pb(NO3) and thiourea [SC(NH2)2] were used as lead and sulfur ion sources, respectively. Structural, morphological and optical analyses revealed good quality growth of nanocrystalline PbS thin films. This study introduced a facile and low cost method to prepare high quality nanocrystalline PbS thin films in a relatively short growth time for optoelectronic applications.
    Matched MeSH terms: Heating
  2. Lee XJ, Lee LY, Hiew BYZ, Gan S, Thangalazhy-Gopakumar S, Kiat Ng H
    Bioresour Technol, 2017 Dec;245(Pt A):944-953.
    PMID: 28946195 DOI: 10.1016/j.biortech.2017.08.175
    This research investigated the removal of lead (Pb(2+)) by a novel biochar derived from palm oil sludge (POS-char) by slow pyrolysis. Multistage optimizations with central composite design were carried out to firstly optimize pyrolysis parameters to produce the best POS-char for Pb(2+) removal and secondly to optimize adsorption conditions for the highest removal of Pb(2+). The optimum pyrolysis parameters were nitrogen flowrateof30mLmin(-1), heating rateof10°Cmin(-1), temperatureof500°C and timeof30min. The optimum Pb(2+) adsorption conditions were concentrationof200mgL(-1), timeof60min, dosageof0.3g and pH of 3.02. The various functional groups within POS-char played a vital role in Pb(2+) uptake. Regeneration was demonstrated to be feasible using hydrochloric acid. Adsorption equilibrium was best described by Freundlich model. At low concentration range, adsorption kinetic obeyed pseudo-first-order model, but at high concentration range, it followed pseudo-second-order model. Overall, the results highlighted that POS-char is an effective adsorbent for Pb(2+) removal.
    Matched MeSH terms: Heating
  3. Hai T, Alsubai S, Yahya RO, Gemeay E, Sharma K, Alqahtani A, et al.
    Chemosphere, 2023 Oct;338:139371.
    PMID: 37442387 DOI: 10.1016/j.chemosphere.2023.139371
    Combined cooling, heating and power (CCHP) is one of methods for enhancing the efficiency of the energy conversion systems. In this study a CCHP system consisting of a gas turbin (GT) as the topping cycle, and an organic Rankine cycle (ORC) associated with double-effect absorbtion chiller (DEACH) is decisioned as the bottoming cycle to recover the waste heat from GT exhaust gas. The considered CCHP system is investigated to maintain electricity, heating and cooling demand of a town. A parametric study is investigated and the effect decision variables on the performance indicators including exergy efficiency, total cost rate (TCR), cooling capacity, and ORC power generation is examined. Decision variables of the ORC system consist of HRVG pressure, and condenser pressure and the DEACH including evaporator pressure, condseser pressure, concentration of the concentrated solution, concentration of the weak solution, and solution mass flow rate. Finally a multi-objective optimization performed using Genetic Algorithm (GA) and the optimal design point is selected. It is observed at the optimum point the exergy efficiency, TCR, and sustainability index are 17.56%, 74.49 $/h, and 1.21, respectively.
    Matched MeSH terms: Heating
  4. Andrew AM, Zakaria A, Mad Saad S, Md Shakaff AY
    Sensors (Basel), 2016;16(1).
    PMID: 26797617 DOI: 10.3390/s16010031
    In this study, an early fire detection algorithm has been proposed based on low cost array sensing system, utilising off- the shelf gas sensors, dust particles and ambient sensors such as temperature and humidity sensor. The odour or "smellprint" emanated from various fire sources and building construction materials at early stage are measured. For this purpose, odour profile data from five common fire sources and three common building construction materials were used to develop the classification model. Normalised feature extractions of the smell print data were performed before subjected to prediction classifier. These features represent the odour signals in the time domain. The obtained features undergo the proposed multi-stage feature selection technique and lastly, further reduced by Principal Component Analysis (PCA), a dimension reduction technique. The hybrid PCA-PNN based approach has been applied on different datasets from in-house developed system and the portable electronic nose unit. Experimental classification results show that the dimension reduction process performed by PCA has improved the classification accuracy and provided high reliability, regardless of ambient temperature and humidity variation, baseline sensor drift, the different gas concentration level and exposure towards different heating temperature range.
    Matched MeSH terms: Heating
  5. Kuang TK, Kang YB, Segarra I, Kanwal U, Ahsan M, Bukhari NI
    Turk J Pharm Sci, 2021 04 20;18(2):167-175.
    PMID: 33902255 DOI: 10.4274/tjps.galenos.2020.48902
    Objectives: This study was conducted to assess the effect of microwave heating on the preparation of paracetamol cross-linked gelatin matrices by using the design of experiment (DoE) approach and explore the influence of the duration of microwave irradiation, the concentrations of crosslinker, and the amount of sodium bicarbonate (salt) on paracetamol release. These parameters were also compared with those of the matrices prepared via conventional heating.

    Materials and Methods: Twenty gel matrices were prepared with different durations of microwave irradiation, amounts of maize, and concentrations of sodium bicarbonate as suggested by Design Expert (DX®). The percentage drug release, the coefficient of variance (CV) in release, and the mean dissolution time (MDT) were the properties explored in the designed experimentation.

    Results: Target responses were dependent on microwave irradiation time, cross-linker amount, and salt concentration. Classical and microwave heating did not demonstrate statistically significant difference in modifying the percentage of drug released from the matrices. However, the CVs of microwave-assisted formulations were lower than those of the gel matrices prepared via classical heating. Thus, microwave heating produced lesser variations in drug release. The optimized gel matrices demonstrated that the observed percentage of drug release, CV, and MDT were within the prediction interval generated by DX®. The release mechanism of the matrix formulations followed the Peppas-Korsmeyer anomalous transport model.

    Conclusion: The DoE-supported microwave-assisted approach could be applied to optimize the critical factors of drug release with less variation.

    Matched MeSH terms: Heating
  6. Hasan HA, Abdulmalek E, Rahman MBA, Shaari KB, Yamin BM, Chan KW
    Chem Cent J, 2018 Dec 20;12(1):145.
    PMID: 30570683 DOI: 10.1186/s13065-018-0509-z
    BACKGROUND: Although the development of antibiotic and antioxidant manufacturing, the problem of bacterial resistance and food and/or cosmetics oxidation still needs more efforts to design new derivatives which can help to minimize these troubles. Benzimidazo[1,2-c]quinazolines are nitrogen-rich heterocyclic compounds that possess many pharmaceutical properties such as antimicrobial, anticonvulsant, immunoenhancer, and anticancer.

    RESULTS: A comparative study between two methods, (microwave-assisted and conventional heating approaches), was performed to synthesise a new quinazoline derivative from 2-(2-aminophenyl)-1H-benzimidazole and octanal to produce 6-heptyl-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline (OCT). The compound was characterised using FTIR, 1H and 13C NMR, DIMS, as well as X-ray crystallography. The most significant peak in the 13C NMR spectrum is C-7 at 65.5 ppm which confirms the cyclisation process. Crystal structure analysis revealed that the molecule grows in the monoclinic crystal system P21/n space group and stabilised by an intermolecular hydrogen bond between the N1-H1A…N3 atoms. The crystal packing analysis showed that the molecule adopts zig-zag one dimensional chains. Fluorescence study of OCT revealed that it produces blue light when expose to UV-light and its' quantum yield equal to 26%. Antioxidant activity, which included DPPH· and ABTS·+ assays was also performed and statistical analysis was achieved via a paired T-test using Minitab 16 software with P 

    Matched MeSH terms: Heating
  7. Salema AA, Ani FN
    Bioresour Technol, 2011 Feb;102(3):3388-95.
    PMID: 20970995 DOI: 10.1016/j.biortech.2010.09.115
    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.
    Matched MeSH terms: Heating/methods
  8. Nizamuddin S, Qureshi SS, Baloch HA, Siddiqui MTH, Takkalkar P, Mubarak NM, et al.
    Materials (Basel), 2019 Jan 28;12(3).
    PMID: 30696042 DOI: 10.3390/ma12030403
    The process parameters of microwave-induced hydrothermal carbonization (MIHTC) play an important role on the hydrothermal chars (hydrochar) yield. The effect of reaction temperature, reaction time, particle size and biomass to water ratio was optimized for hydrochar yield by modeling using the central composite design (CCD). Further, the rice straw and hydrochar at optimum conditions have been characterized for energy, chemical, structural and thermal properties. The optimum condition for hydrochar synthesis was found to be at a 180 °C reaction temperature, a 20 min reaction time, a 1:15 weight per volume (w/v) biomass to water ratio and a 3 mm particle size, yielding 57.9% of hydrochar. The higher heating value (HHV), carbon content and fixed carbon values increased from 12.3 MJ/kg, 37.19% and 14.37% for rice straw to 17.6 MJ/kg, 48.8% and 35.4% for hydrochar. The porosity, crystallinity and thermal stability of the hydrochar were improved remarkably compared to rice straw after MIHTC. Two characteristic peaks from XRD were observed at 2θ of 15° and 26°, whereas DTG peaks were observed at 50⁻150 °C and 300⁻350 °C for both the materials. Based on the results, it can be suggested that the hydrochar could be potentially used for adsorption, carbon sequestration, energy and agriculture applications.
    Matched MeSH terms: Heating
  9. Sobhi, B., Noranizan, M., Ab Karim, S., Abdul Rahman, R., Bakar, J., Ghazali, Z.
    MyJurnal
    Chili shrimp paste (CSP) is a favorite condiment in Southeast Asia. Microbial spoilage makes CSP unsuitable for consumption within several days. Thermal treatment was applied to produce microbiologically safe CSP. The effect of heating process on physicochemical and sensorial properties of CSP was studied. Heating at the optimum condition (21.6 min, 80 ˚C) has been shown effective and reliable in controlling microorganisms in CSP. Complete inactivation of peroxidase activities could not be accomplished at the optimal point, and significant reduction of the total phenolic and capsaicinoids contents was observed. Sensorial evaluation indicated that thermally processed CSP was less preferred by panelists when compared to freshly prepared samples of dry weight respectively.
    Matched MeSH terms: Heating
  10. Inada S, Shinagawa K, Illias SB, Sumiya H, Jalaludin HA
    Sci Rep, 2016 09 15;6:33454.
    PMID: 27628271 DOI: 10.1038/srep33454
    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors' knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB.
    Matched MeSH terms: Heating
  11. Jafar AB, Shafie S, Ullah I
    Heliyon, 2020 Jun;6(6):e04201.
    PMID: 32637680 DOI: 10.1016/j.heliyon.2020.e04201
    In this article, we numerically investigate the influence of thermal radiation and heat generation on the flow of an electrically conducting nanofluid past a nonlinear stretching sheet through a porous medium with frictional heating. The partial differential equations governing the flow problems are reduced to ordinary differential equations via similarity variables. The reduced equations are then solved numerically with the aid of Keller box method. The influence of physical parameters such as nanoparticle volume fraction ϕ, permeability parameter K, nonlinear stretching sheet parameter n, magnetic field parameter M, heat generation parameter Q and Eckert number Ec on the flow field, temperature distribution, skin friction and Nusselt number are studied and presented in graphical illustrations and tabular forms. The results obtained reveal that there is an enhancement in the rate of heat transfer with the rise in nanoparticle volume fraction and permeability parameter. The temperature distribution is also influenced with the presence of K, Q, R and ϕ. This shows that the solid volume fraction of nanoparticle can be used in controlling the behaviours of heat transfer and nanofluid flows.
    Matched MeSH terms: Heating
  12. Hayat T, Abbasi F, Ahmad B, Alsaedi A
    Sains Malaysiana, 2014;43:1583-1590.
    This article concerns with a mixed convection peristaltic flow of an electrically conducting fluid in an inclined asymmetric channel. Analysis has been carried out in the presence of Joule heating. The fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. A nonlinear coupled governing system is computed. Numerical results were presented for the velocity, pressure gradient, temperature and streamlines. Heat transfer rate at the wall is computed and analyzed. Graphs reflecting the contributions of embedded parameters were discussed.
    Matched MeSH terms: Heating
  13. Yasin MH, Ishak A, Pop I
    Sci Rep, 2015;5:17848.
    PMID: 26647651 DOI: 10.1038/srep17848
    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.
    Matched MeSH terms: Heating
  14. Zhan SZ, Chen W, Zheng J, Ng SW, Li D
    Dalton Trans, 2021 Jan 18.
    PMID: 33459321 DOI: 10.1039/d0dt03661g
    Five luminescent polymorphic aggregates of trinuclear Cu(i)-pyrazolate, namely [anti-Cu3L3]2 (1), [syn-Cu3L3·C2H5OH]2 (2), [anti-Cu3L3·C2H5OH]n (3), [anti-Cu3L3·0.5C7H8]n (4) and [syn-Cu3L3·C8H10]n (5) (HL = 4-(pyridin-4-ylthio)-3,5-dimethyl-1H-pyrazole), were reported. The trimeric Cu3L3 fragments present syn- and anti-conformations dependent on the dangled direction of 4-pyridyl groups on the two sides of the Cu3Pz3 plane (Pz = pyrazolate). Intertrimeric NPyCu weak coordination bonds associate these Cu3L3 fragments together to form dimeric or polymeric structures, which are further stabilized by crystallized solvent molecules or intertrimeric CuCu interactions. The solvated complexes (3-5) may be transformed into the unsolvated complex 1 by evacuation of the crystallized solvents upon heating. All these complexes emit from green to yellow under UV irradiation, which originated from the triplet excited states of metal to ligand charge transfer (3MLCT) mixed with intertrimeric CuCu interactions. This work provides a novel kind of supramolecular aggregate based on Cu3Pz3 beyond the classical π-acidbase adducts and metallophilicity-dependent dimers/oligomers.
    Matched MeSH terms: Heating
  15. Ismail I, Hwang YH, Joo ST
    Food Chem, 2020 Aug 01;320:126656.
    PMID: 32224424 DOI: 10.1016/j.foodchem.2020.126656
    The influence of temperature-time combinations on non-volatile compound and taste traits of beef semitendinosus muscles tested by the electronic tongue was studied. Single-stage sous-vide at 60 and 70 °C (6 and 12 h), and two-stage sous-vide that sequentially cooked at 45 °C (3 h) and 60 °C (either 3 or 9 h) were compared with traditional cooking at 70 °C (30 min). Umami was better explained in the given model of partial least squares regression than astringency, sourness, saltiness, bitterness, and richness. Sous-vide at 70 °C for 12 h characterized the most umami, likely adenosine-5'-monophosphate (AMP) and guanosine-5'-monophosphate (GMP) as significant contributors. Two-stage sous-vide projected higher histidine, leucine, inosine, and hypoxanthine with the astringent and sour taste significant after 6 and 12 h cooking, respectively. Equivalent umami concentration (EUC) between umami amino acids and umami nucleotides showed a strong relationship to umami taste assessed by the electronic tongue.
    Matched MeSH terms: Heating
  16. Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, et al.
    Bioresour Technol, 2017 Jan;224:708-713.
    PMID: 27838316 DOI: 10.1016/j.biortech.2016.10.090
    The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin-1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol-1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol-1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol-1 and 168 to 172kJmol-1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
    Matched MeSH terms: Heating
  17. Thapa S, Zaki SA
    J Therm Biol, 2024 Feb;120:103809.
    PMID: 38364574 DOI: 10.1016/j.jtherbio.2024.103809
    The sub-Himalayan region extends over 2500 km, extending over several countries. Though the effects of climate change is widely anticipated in the diverse but fragile ecosystem of the Himalayas, very less research has been conducted on the indoor environment of the buildings in these regions. In this study, a pre-validated model of 3-storey concrete residential building was used to study the indoor performance and thermal comfort in the face of climate change in the 8 (eight) different hill towns (hill stations) located from west to the east. Rise in ambient and indoor conditions were evident as a part of climate change with colder locations being affected the most. The thermal comfort assessment using both the climate chamber based PMV model and adaptive models revealed the decrease in cold related discomfort and increase in hot related discomfort. On an overall, the indoor conditions improved in these cold locations. The indoor and outdoor thermal condition and thermal comfort plummeted significantly with latitude and elevation. The heating demand in the future climate reduced by about 50-70 % in warmer locations, while the cooling demand increased by as much as 1000-2000 % in cold locations, respectively. Additionally, it was seen that the thermal environment and comfort both declined more rapidly with elevation in the locations lying in the western Himalayas as compared to those in the eastern Himalayas.
    Matched MeSH terms: Heating*
  18. Seow EK, Gan CY, Tan TC, Lee LK, Easa AM
    J Food Sci Technol, 2019 Apr;56(4):2105-2114.
    PMID: 30996444 DOI: 10.1007/s13197-019-03691-z
    Present study compared the rheological properties of glutinous rice flour (GRF) gel (33.3%, w/v) added with raw bee honey (RBH) or stingless bee honey (SBH) with/without heating treatment. RBH (diatase activity: 12.14 Schade) and SBH (1.53 Schade) significantly reduced the network of GRF gel by lowering the gel viscosity, with RBH having the highest rate of viscosity decrease (- 2.74 × 10-5 Pa). As the addition of heated-SBH or heated-RBH did not reduce gel viscosity, it was hypothesised that active diastase played a major role to weaken gel network. This was further supported by the significant and the lowest storage modulus (G') value of RBH-GRF gel (5.99 ± 0.02 Pa), as compared to SBH-GRF (6.27 ± 0.04 Pa) and control (6.33 ± 0.04 Pa). A detail of rheological behaviour of the gels was further explained using power law. Overall, this GRF gel model has successfully demonstrated the potential of honey diastase in weakening network of starch-based food.
    Matched MeSH terms: Heating
  19. Shuanglin Song, Shugang Wang, Yuntao Liang, Xiaochen Li, Qi Lin
    Sains Malaysiana, 2017;46:2143-2148.
    The air supply velocity is an important factor affecting the spontaneous combustion of coal. The appropriate air velocity can not only provide the oxygen required for the oxidation reaction, but maintains the good heat storage environment. Therefore, it is necessary to study the influence of the actual air velocity in the pore space on the self-heating process of coal particles. This paper focuses on studying the real space piled up by spherical particles. CFD simulation software is used to establish the numerical model from pore scale. Good fitness of the simulation results with the existing results verifies the feasibility of the calculation method. Later, the calculation conditions are changed to calculate and analyze the velocity field and the temperature field for self-heating of some particles (the surface of the particles is at a certain temperature) and expound the effect of different air supply velocities on gathering and dissipating the heat.
    Matched MeSH terms: Heating
  20. Suseno S.H., Tajul, A.Y., Nadiah, W.A.
    MyJurnal
    Magnesol XL concentration (0.5, 1, 3 and 5%), heating temperature (25, 50, 70 and 90 ˚C) and time (5, 10, 15 and 20 mnt) during purification to the color properties (Lightness L*, redness a* and yellowness b*) of Sardinella lemuru oil were evaluated. Purification using Magnesol XL in any condition effectively increase the L* and a* value but reduced the b* value of the lemuru oil. Highest L* value (96.57) was achieved at the treatment temperature 90 ˚C, 5 % level of Magnesol XL concentration and 5 minutes process. Lowest a* value (more green color) was obtained at treatment 70 ˚C temperature, 5% level of concentration and 15 minutes, then lowest b* value was obtained at treatment 90 ˚C temperature, 5 % concentration and 5 minutes process. All the refined lemuru oil’s result had a hue angle higher than 90˚ representing the light greenish-yellow color.
    Matched MeSH terms: Heating
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links