Displaying publications 61 - 80 of 84 in total

Abstract:
Sort:
  1. Rudi NN, Muhamad MS, Te Chuan L, Alipal J, Omar S, Hamidon N, et al.
    Heliyon, 2020 Sep;6(9):e05049.
    PMID: 33033772 DOI: 10.1016/j.heliyon.2020.e05049
    Manganese has recently been a topic of interest among researchers, particularly when 1,752 million tonnes of manganese are expected to be produced by the steel industry in 2020. Manganese discharges from industrial effluents have increased manganese contamination in water sources. Its concentrations of more than 0.2 mg/L in the water sources could have negative impacts on human health and the aquatic ecosystem. Thereby, the available water treatment processes face challenges in effectively removing manganese at low cost. In response to these challenges, adsorption has emerged as one of the most practical water treatment processes for manganese removal. In particular, agricultural waste adsorbents received a lot of attention owing to their low cost and high efficiency (99%) in the removal of manganese. Therefore, this paper reviews the removal of manganese by adsorption process using agricultural waste adsorbents. The factors affecting the adsorption process, the mechanisms, and the performances of the adsorbents are elucidated in detail.
    Matched MeSH terms: Manganese
  2. Lin R, Hu E, Liu M, Wang Y, Cheng H, Wu J, et al.
    Nat Commun, 2019 04 09;10(1):1650.
    PMID: 30967531 DOI: 10.1038/s41467-019-09248-0
    Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.
    Matched MeSH terms: Manganese
  3. Ali MSM, Zainal Z, Hussein MZ, Wahid MH, Bahrudin NN, Muzakir MM, et al.
    Int J Biol Macromol, 2021 Jun 01;180:654-666.
    PMID: 33722623 DOI: 10.1016/j.ijbiomac.2021.03.054
    The present work developed porous carboxymethyl cellulose (CMC) carbon film from lignocellulosic based materials as supercapacitor electrode. Porous CMC carbon films of bamboo (B) and oil palm empty fruit bunch (O) were prepared through simple incipient wetness impregnation method followed by calcination process before incorporation with manganese oxide (Mn2O3). The carbonization produced porous CMC carbon whereby CMCB exhibited higher surface area than CMCO. After Mn2O3 incorporation, the crystallite size of CMCB and CMCO were calculated as 50.09 nm and 42.76 nm, respectively whereas Mn2O3/CMCB and Mn2O3/CMCO composite films were revealed to be 26.71 nm and 35.60 nm in size, respectively. Comparatively, the Mn2O3/CMCB composite film exhibited higher electrochemical performance which was 31.98 mF cm-2 as compared to 24.15 mF cm-2 by Mn2O3/CMCO composite film and both CMC carbon films with fairly stable cycling stability after 1000 charge-discharge cycles. Therefore, it can be highlighted that Mn2O3/CMC composite film as prepared from bamboo and oil palm fruit can potentially become the new electrode materials for supercapacitor application.
    Matched MeSH terms: Manganese Compounds
  4. Ishadi NA, Rawi CS, Ahmad AH, Abdul NH
    Trop Life Sci Res, 2014 Dec;25(2):61-79.
    PMID: 27073600 MyJurnal
    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ (2) = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H' and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin.
    Matched MeSH terms: Manganese
  5. Irwandi, J., Farida, O.
    MyJurnal
    A study was conducted to quantitate the concentrations of heavy metals, such as Hg, Pb and Cd in eight species of marine fin fish caught off the coast of Langkawi Island in Malaysia, as well as in its waters. The same fish were also used to determine the content of nutritional minerals, such as copper (Cu), zinc (Zn), calcium (Ca), and manganese (Mn).Fish and water samples were collected from four different areas, namely (1) Main Jetty Pulau Tuba (MJPT), (2) Teluk Cempedak Jetty (TCJ), (3) Simpang Tiga Chian Lian (STCL) and (4) Main Jetty Kuah (MJK) around Langkawi Island. Results showed that for the vital elements, all species had higher concentration of Zn compared to other elements. For the toxic elements, lead (Pb) and mercury (Hg) were found to have lower concentration of the mean values than the permissible limits set by FAO/WHO (1984). However, cadmium (Cd) level was slightly higher than the permissible limit but was still acceptable according to the Malaysian Food Regulation (1985). It can be concluded that all fish species studied are safe to be consumed.
    Matched MeSH terms: Manganese
  6. Noor Halini Baharim, Razali Ismail, Mohamad Hanif Omar
    Sains Malaysiana, 2011;40:1179-1186.
    Thermal stratification in lakes is an important natural process that can have a significant effect on the water resource quality. The potential changes in chemical contents in water resulting from stratification are the production of ammonia, sulphides and algal nutrients and the increasing concentrations of iron and manganese. One of the water supply reservoirs located in Johor, Malaysia facing with high iron and manganese concentrations associated with the period of stratifications. This study showed that the level of thermal stratification in the reservoir varied at different time of the year. During the strongest period of stratification, the dissolved oxygen content was found to diminish significantly with depth and iron and manganese were recorded at the highest concentrations. Although significant period of rainfalls contributed to the natural destratification of reservoir, lower concentrations of iron and manganese only remained for a shorter period before the concentrations continued to increase with the onset of the thermal stratification. A good understanding on the behaviour of the reservoir may help to identify several measures for the improvement of water quality.
    Matched MeSH terms: Manganese
  7. Syariena Arshad, Salleh M, Yahaya M
    Sains Malaysiana, 2008;37:233-237.
    Titanium dioxide (TiO2), porphyrin and TiO2 coated with dye porphyrin thin films were prepared on Quartz Crystal Microbalance (QCM) using sol-gel dip coating method and were tested for sensing of volatile organic compounds (VOCs). The porphyrin used was 5,10,15,20-tetraphenyl-21H,23H-porphine manganese (III) chloride (MnTPPCl). The sensing sensitivity was based on the change in the fundamental frequency of the QCM upon exposure towards six vapor samples, namely ethanol, acetone, cyclohexane, toluene, o-xylene and 2-propanol. It was found that all the thin films were sensitive towards all the vapors. However, the TiO2 coated MnTPPCl thin film exhibit the most sensitive and has good selectivity property.
    Matched MeSH terms: Manganese
  8. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
    Matched MeSH terms: Manganese/analysis; Manganese/chemistry
  9. Jami MS, Rosli NS, Amosa MK
    Water Environ Res, 2016 Jun;88(6):566-76.
    PMID: 26556067 DOI: 10.2175/106143015X14362865227157
    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.
    Matched MeSH terms: Manganese
  10. Zhao P, Wang Y, Zhang Y, Guo T, Zhang Z, Zhang WJ, et al.
    Saudi J Biol Sci, 2016 May;23(3):353-7.
    PMID: 27081360 DOI: 10.1016/j.sjbs.2015.08.007
    In this study, the selenium enriched peanuts and the different solubility proteins extracted from them were investigated. The dried defatted selenium enriched peanuts (SeP) powder (0.3147 μg/g) had a 2.5-fold higher mean total selenium concentration than general peanuts (GP) power (0.1233 μg/g). The SeP had higher concentration of selenium, manganese and zinc than that of GP, but less calcium. The rate of extraction of protein was 23.39% for peanuts and alkali soluble protein was the main component of protein in SeP, which accounted for 92.82% of total soluble protein and combined selenium was 77.33% of total selenium protein. In different forms of proteins from SeP, the WSePr due to higher concentration of selenium had higher DPPH free-radical scavenging activity, higher reducing activity and longer induction time than other proteins.
    Matched MeSH terms: Manganese
  11. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y
    Sci Rep, 2019 Nov 14;9(1):16782.
    PMID: 31728061 DOI: 10.1038/s41598-019-53421-w
    Asymmetric supercapacitors (ASC) have shown a great potential candidate for high-performance supercapacitor due to their wide operating potential which can remarkably enhance the capacitive behaviour. In present work, a novel positive electrode derived from functionalised carbon nanofibers/poly(3,4-ethylenedioxythiophene)/manganese oxide (f-CNFs/PEDOT/MnO2) was prepared using a multi-step route and activated carbon (AC) was fabricated as a negative electrode for ASC. A uniform distribution of PEDOT and MnO2 on f-CNFs as well as porous granular of AC are well-observed in FESEM. The assembled f-CNFs/PEDOT/MnO2//AC with an operating potential of 1.6 V can achieve a maximum specific capacitance of 537 F/g at a scan rate of 5 mV/s and good cycling stability (81.06% after cycling 8000 times). Furthermore, the as-prepared ASC exhibited reasonably high specific energy of 49.4 Wh/kg and low charge transfer resistance (Rct) of 2.27 Ω, thus, confirming f-CNFs/PEDOT/MnO2//AC as a promising electrode material for the future energy storage system.
    Matched MeSH terms: Manganese Compounds
  12. Mohammed, Thamer Ahmed, Abdul Halim Ghazali
    MyJurnal
    In Malaysia, the use of groundwater can help to meet the increasing water demand. The utilization of the aquifers is currently contributing in water supplies, particularly for the northern states. In this study, quantitative and qualitative assessments were carried out for the groundwater exploitation in the states of Kelantan, Melaka, Terengganu and Perak. The relevant data was acquired from the Department of Mineral and Geoscience, Malaysia. The quantitative assessment mainly included the determination of the use to yield ratio (UTY). The formula was proposed to determine the UTY ratio for aquifers in Malaysia. The proposed formula was applied to determine the maximum UTY ratios for the aquifers located in the states of Kelantan, Melaka, and Terengganu, and were found to be 4.2, 5.2 and 0.6, respectively. This indicated that exploitation of groundwater was beyond the safe limit in the states of Kelantan and Melaka. The qualitative assessment showed that the groundwater is slightly acidic. In addition, the concentrations of iron and manganese were found to be higher than the allowable limits, but the chloride concentration was found within the allowable limit.
    Matched MeSH terms: Manganese
  13. Abdollahi Y, Zakaria A, Sairi NA, Matori KA, Masoumi HR, Sadrolhosseini AR, et al.
    ScientificWorldJournal, 2014;2014:726101.
    PMID: 25538962 DOI: 10.1155/2014/726101
    The artificial neural network (ANN) modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software's option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.
    Matched MeSH terms: Manganese/chemistry*
  14. Hasan HA, Abdullah SR, Kofli NT, Kamarudin SK
    J Environ Manage, 2012 Nov 30;111:34-43.
    PMID: 22813857 DOI: 10.1016/j.jenvman.2012.06.027
    Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.
    Matched MeSH terms: Manganese/metabolism*
  15. Rizwan Z, Zakaria A, Ghazali MS
    Int J Mol Sci, 2011;12(3):1625-32.
    PMID: 21673911 DOI: 10.3390/ijms12031625
    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
    Matched MeSH terms: Manganese Compounds/chemistry*
  16. Ismail R, Kassim MA, Inman M, Baharim NH, Azman S
    Water Sci Technol, 2002;46(9):179-83.
    PMID: 12448467
    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.
    Matched MeSH terms: Manganese/isolation & purification*
  17. Mahmad-Toher AS, Govender N, Dorairaj D, Wong MY
    Sci Rep, 2022 Sep 20;12(1):15690.
    PMID: 36127366 DOI: 10.1038/s41598-022-19308-z
    Rice brown spot (BS) exerts devastating agronomic effects on grain quality and overall productivity. In Peninsular Malaysia, BS disease incidence is fairly prevalent and little is known about the diversity of BS pathogens in the local granaries. Fifteen isolates from BS symptomatic rice plants were identified at five different rice granaries across Peninsular Malaysia. Based on the morphological and molecular analyses, two isolates were confirmed as Bipolaris oryzae while the rest were identified as Exserohilum rostratum. Phylogenetic tree analysis revealed that BS incidence in rice granaries in Peninsular Malaysia is caused by a pair of closely related fungal pathogens, E. rostratum and B. oryzae, with the former being more predominant. Cultural characterization of E. rostratum isolate KT831962 showed the best growth and sporulation activity on corn meal agar plates incubated in complete darkness. The effects of calcium silicate (CaSiO3) and rice husk ash (RHA) soil amendment against MR219 and MR253 rice varieties were evaluated during rice-E. rostratum interaction. Results showed that soil amelioration using CaSiO3 and RHA singly and in combination with manganese (Mn) significantly reduced rice BS disease severity. The BS disease index was reduced significantly to less than 31.6% in the silicon-treated rice plants relative to the control plants at 41.2%. Likewise, the grain yield at the harvest stage showed significantly higher yield in the Si-treated rice plants in comparison to the control, non-Si treated rice plants. The findings highlight the potential of RHA agro-waste as Si fertilizer in a sustainable rice production system.
    Matched MeSH terms: Manganese/pharmacology
  18. Hashim SP, Sidek HA, Halimah MK, Matori KA, Yusof WM, Zaid MH
    Int J Mol Sci, 2013;14(1):1022-30.
    PMID: 23296276 DOI: 10.3390/ijms14011022
    A systematic set of borotellurite glasses doped with manganese (1-x) [(B(2)O(3))(0.3)(TeO(2))(0.7)]-xMnO, with x = 0.1, 0.2, 0.3 and 0.4 mol%, were successfully synthesized by using a conventional melt and quench-casting technique. In this study, the remelting effect of the glass samples on their microstructure was investigated through density measurement and FT-IR spectra and evaluated by XRD techniques. Initial experimental results from XRD evaluation show that there are two distinct phases of glassy and crystallite microstructure due to the existence of peaks in the sample. The different physical behaviors of the studied glasses were closely related to the concentration of manganese in each phase. FTIR spectra revealed that the addition of manganese oxide contributes the transformation of TeO(4) trigonal bipyramids with bridging oxygen (BO) to TeO(3) trigonal pyramids with non-bridging oxygen (NBO).
    Matched MeSH terms: Manganese/chemistry*; Manganese Compounds/chemistry
  19. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
    Matched MeSH terms: Manganese Compounds
  20. Khoo, Hock-Eng, Azrina Azlan, Mohd Aizat Idris, Amin Ismail, Muhammad Rizal Razman
    MyJurnal
    The present study was carried out to determine the concentrations of selected metal elements (lead, copper, manganese, zinc and iron) in 51 samples of commercial drinking water and tap water available in Malaysia. The results indicated that low metal elements were found in the studied water samples. Lead, manganese, zinc and iron were not detected in some of the studied samples, except copper. The concentrations of the metal elements in the studied samples were well below the maximum permitted concentrations as recommended. Therefore these drinking water are safe for consumption and do not pose adverse effect to the health of consumers due to metal toxicity.
    Matched MeSH terms: Manganese
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links