Displaying publications 781 - 800 of 6769 in total

Abstract:
Sort:
  1. Younas A, Naqvi SA, Khan MR, Shabbir MA, Jatoi MA, Anwar F, et al.
    J Food Biochem, 2020 09;44(9):e13332.
    PMID: 32588917 DOI: 10.1111/jfbc.13332
    Date palm counts among the oldest fruit crops of the world and is mainly cultivated for its highly nutritious fruits consumed as a staple food in many countries, especially in the Gulf region. Dates are enriched with numerous therapeutic bioactives and functional compounds such as phenolics, flavonols, carotenoids, minerals, and vitamins that not only provide an appreciable amount of energy required for the human body but also act as an effective therapeutic agent against several diseases. This review aimed to provide a deep insight into the nutritional as well as phytochemicals profile of date fruit and its seeds in order to explore their biological (anti-cancer, anti-diabetic, cardio-protective, anti-inflammatory properties), functional food, and nutra-pharmaceutical attributes. PRACTICAL APPLICATIONS: This review provides updated information regarding the date fruits and seeds phytochemicals composition together with highlighting dates potential as a natural therapeutic agent against several diseases. The study also urges the importance of consuming dates as a great package to live a healthy life due to the functional food and nutraceutical properties of this valuable fruit. The study also provides information first time as recommending dates to cope with the hidden hunger or micronutrient deficiency faced by the third world inhabitants. Hence, the review may further help the industry and researchers to explore the potential of dates for future medicinal and nutra-pharmaceutical applications.
  2. Kaur P, Sandhu KS, Bangar SP, Purewal SS, Kaur M, Ilyas RA, et al.
    Antioxidants (Basel), 2021 Jul 28;10(8).
    PMID: 34439463 DOI: 10.3390/antiox10081214
    Six different solvents were used as extraction medium (water, methanol, ethanol, acidified methanol, benzene and acetone) to check their phenolics extraction efficacy from flour of two rye cultivars. Rye extracts with different solvents were further analyzed for the estimation of phytochemicals and antioxidant properties. Different tests (TPC, TAC, DPPH, FRAP, ABTS, RPA and CTC) were performed to check the antioxidant properties and tannin contents in extracts. A bioactive profile of a rye cultivar indicated the presence of total phenolic compounds (0.08-2.62 mg GAE/g), total antioxidant capacity (0.9-6.8 mg AAE/g) and condensed tannin content (4.24-9.28 mg CE/100 g). HPLC was done to check phenolics in rye extract with the best solvent (water), which indicated the presence of Catechol (91.1-120.4 mg/100 g), resorcinol (52-70.3 mg/100 g), vanillin (1.3-5.5 mg/100 g), ferulic acid (1.4-1.5 mg/100 g), quercetin (4.6-4.67 mg/100 g) and benzoic acid (5.3 mg/100 g) in rye extracts. The presence of DNA damage protection potential in rye extracts indicates its medicinal importance. Rye flour could be utilized in the preparation of antioxidant-rich health-benefiting food products.
  3. Mumtaz A, Ashfaq UA, Ul Qamar MT, Anwar F, Gulzar F, Ali MA, et al.
    Nat Prod Res, 2017 Jun;31(11):1228-1236.
    PMID: 27681445 DOI: 10.1080/14786419.2016.1233409
    Medicinal plants are the main natural pools for the discovery and development of new drugs. In the modern era of computer-aided drug designing (CADD), there is need of prompt efforts to design and construct useful database management system that allows proper data storage, retrieval and management with user-friendly interface. An inclusive database having information about classification, activity and ready-to-dock library of medicinal plant's phytochemicals is therefore required to assist the researchers in the field of CADD. The present work was designed to merge activities of phytochemicals from medicinal plants, their targets and literature references into a single comprehensive database named as Medicinal Plants Database for Drug Designing (MPD3). The newly designed online and downloadable MPD3 contains information about more than 5000 phytochemicals from around 1000 medicinal plants with 80 different activities, more than 900 literature references and 200 plus targets. The designed database is deemed to be very useful for the researchers who are engaged in medicinal plants research, CADD and drug discovery/development with ease of operation and increased efficiency. The designed MPD3 is a comprehensive database which provides most of the information related to the medicinal plants at a single platform. MPD3 is freely available at: http://bioinform.info .
  4. Salar U, Khan KM, Jabeen A, Faheem A, Fakhri MI, Saad SM, et al.
    Bioorg Chem, 2016 12;69:37-47.
    PMID: 27669119 DOI: 10.1016/j.bioorg.2016.09.006
    Coumarin sulfonates 4-43 were synthesized by reacting 3-hydroxy coumarin 1, 4-hydroxy coumarin 2and6-hydroxy coumarin 3 with different substituted sulfonyl chlorides and subjected to evaluate for their in vitro immunomodulatory potential. The compounds were investigated for their effect on oxidative burst activity of zymosan stimulated whole blood phagocytes using a luminol enhanced chemiluminescence technique. Ibuprofen was used as standard drug (IC50=54.2±9.2μM). Eleven compounds 6 (IC50=46.60±14.6μM), 8 (IC50=11.50±6.5μM), 15 (IC50=21.40±12.2μM), 19 (IC50=5.75±0.86μM), 22 (IC50=10.27±1.06μM), 23 (IC50=33.09±5.61μM), 24 (IC50=4.93±0.58μM), 25 (IC50=21.96±14.74μM), 29 (IC50=12.47±9.2μM), 35 (IC50=20.20±13.4μM) and 37 (IC50=14.47±5.02μM) out of forty demonstrated their potential suppressive effect on production of reactive oxygen species (ROS) as compared to ibuprofen. All the synthetic derivatives 4-43 were characterized by different available spectroscopic techniques such as 1H NMR, 13C NMR, EIMS and HRMS. CHN analysis was also performed.
  5. Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, et al.
    Bioresour Technol, 2017 Jan;224:708-713.
    PMID: 27838316 DOI: 10.1016/j.biortech.2016.10.090
    The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin-1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol-1. The activation energy (E) values were shown to be ranging from 103 through 233 kJmol-1. Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol-1 and 168 to 172kJmol-1, calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus.
  6. Ramzan MS, Abbasi MA, Rehman A, Siddiqui SZ, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2018 May;31(3(Supplementary)):1051-1059.
    PMID: 29731443
    An electrophile, N-(1,3-thiazol-2-yl)-2-bromoacetamide (3), was synthesized by the reaction of 1,3-thiazole-2-amine (1) and 2-bromoethanoyl bromide (2) in an aqueous medium. A series of carboxylic acids, 7a-j, were converted into 1,3,4-oxadiazole heterocyclic core, through a series of three steps. The final compounds, 8a-j, were synthesized by stirring 7a-j and 3 in an aprotic polar solvent. The structural elucidation of the synthesized compounds was supported by IR, EI-MS, 1H-NMR, and 13C-NMR spectral data. Title compounds were evaluated for enzyme inhibition against cholinesterases and α-glucosidase enzymes and their cytotoxic behavior was monitored using brine shrimp assay. The enzyme inhibitor potential of compounds was supported by molecular docking studies.
  7. Siyal AA, Shamsuddin MR, Khan MI, Rabat NE, Zulfiqar M, Man Z, et al.
    J Environ Manage, 2018 Oct 15;224:327-339.
    PMID: 30056352 DOI: 10.1016/j.jenvman.2018.07.046
    The world water resources are contaminated due to discharge of a large number of pollutants from industrial and domestic sources. A variety of a single and multiple units of physical, chemical, and biological processes are employed for pollutants removal from wastewater. Adsorption is the most widely utilized process due to high efficiency, simple procedure and cost effectiveness. This paper reviews the research work carried out on the use of geopolymer materials for the adsorption of heavy metals and dyes. Geopolymers possess good surface properties, heterogeneous microstructure and amorphous structure. The performance of geopolymers in the removal of heavy metals and dyes is reported comparable to other materials. The pseudo-second order kinetics and Langmuir isotherm models mostly fit to the adsorption data suggesting homogeneous distribution of adsorption sites with the formation of monolayer adsorbate on the surface of geopolymers. Adsorption of heavy metals and dyes onto geopolymers is spontaneous, endothermic and entropy driven process. Future research should focus on the enhancement of geopolymer performance, testing on pollutants other than heavy metals and dyes, and verification on real wastewater in continuous operation.
  8. Arif MA, Mohamad MS, Abd Latif MS, Deris S, Remli MA, Mohd Daud K, et al.
    Comput Biol Med, 2018 11 01;102:112-119.
    PMID: 30267898 DOI: 10.1016/j.compbiomed.2018.09.015
    Metabolic engineering involves the modification and alteration of metabolic pathways to improve the production of desired substance. The modification can be made using in silico gene knockout simulation that is able to predict and analyse the disrupted genes which may enhance the metabolites production. Global optimization algorithms have been widely used for identifying gene knockout strategies. However, their productions were less than theoretical maximum and the algorithms are easily trapped into local optima. These algorithms also require a very large computation time to obtain acceptable results. This is due to the complexity of the metabolic models which are high dimensional and contain thousands of reactions. In this paper, a hybrid algorithm of Cuckoo Search and Minimization of Metabolic Adjustment is proposed to overcome the aforementioned problems. The hybrid algorithm searches for the near-optimal set of gene knockouts that leads to the overproduction of metabolites. Computational experiments on two sets of genome-scale metabolic models demonstrate that the proposed algorithm is better than the previous works in terms of growth rate, Biomass Product Couple Yield, and computation time.
  9. Mohd Hatta NNKN, Nurumal MS, Isa MLM, Daud A, Ibrahim M, Sharifudin MA, et al.
    Cent Asian J Glob Health, 2019;8(1):348.
    PMID: 32002313 DOI: 10.5195/cajgh.2019.348
    Introduction: Public awareness of osteoporosis is low among women in the developing countries. Health education was shown to be effective in improving knowledge and awareness on maintaining bone health. This study aims to identify the level of knowledge and attitudes among post-menopausal women in Malaysia on achieving bone health throughout the menopausal transition period.

    Methods: A total of 116 post-menopausal female patients of orthopedic menopause clinic were recruited using a purposive sampling approach. Data on osteoporosis awareness and knowledge were collected using validated structured questionnaires Osteoporosis Prevention and Awareness Tool and Osteoporosis Attitude Knowledge Test. The chi-square test was used to determine the association between post-menopausal women's socio-demographic characteristics and their knowledge and attitude towards maintaining bone health.

    Results: Participants' age ranged between 49 and 82 years (61.84, SD=7.87). The knowledge of osteoporosis varied significantly by age (p=0.014) and education (p=0.001) among the studied population. No significant diffrences were found for participants' attitude towards bone health.

    Conclusion: This study showed that the age and education levels have significantly different knowledge of bone health.

  10. Nafeesa K, Aziz-Ur-Rehman -, Abbasi MA, Siddiqui SZ, Rasool S, Ali Shah SA, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2651-2658.
    PMID: 31969298
    A series of 1, 2, 4-triazole derivatives bearing piperidine moiety has been introduced as new anti-diabetic drug candidates with least cytotoxicity. p-Chlorophenylsulfonyl chloride (1) and ethyl nipecotate (2) were the starting reagents that resulted into corresponding 3,4,5-trisubstituted-1,2,4-triazole (6) through a series of steps. A series of electrophiles, 9a-e, were synthesized by reacting 4-bromobutyryl chloride (7) with differently substituted aromatic amines (8a-e) under basic aqueous medium. Target derivatives, 10a-e, were synthesized by the reaction of compound 6 with N-aryl-4-bromobutanamides (9a-e) in an aprotic solvent. Structures of all the derivatives were verified by spectroscopic analysis using IR, 1H-NMR, 13C-NMR and EIMS. Most of the derivatives revealed moderate to good α-glucosidase inhibitory activity with reference to acarbose. The moderate hemolytic potential demonstrated least toxicity.
  11. Ahmad A, Abbasi SA, Hafeez M, Khan TM, Rafique M, Ahmed N, et al.
    Materials (Basel), 2021 Oct 21;14(21).
    PMID: 34771799 DOI: 10.3390/ma14216277
    With many advantages over well-established methods, laser induced breakdown spectroscopy (LIBS) has emerged as a useful analytical technique for the compositional analysis of multi-elemental geological materials. In this study, LIBS was employed for qualitative and quantitative analysis of a rare mineral, astrophyllite, bearing precious elements of industrial and technological interest. The experiment was carried out using second harmonic generation of Nd:YAG laser of pulse width 5 ns and repetition rate of 10 Hz. Microplasma was produced by focusing laser beam on an astrophyllite target, and optical emissions from the generated plasma were recorded in the spectral range of 200-720 nm with the help of a LIBS2000+ detection system. On analyzing the optical spectra, existence of 15 elements in astrophyllite target were revealed. These elements include: Ti, W, Ag, Al, Ba, Ca, Cr, Cu, Fe, Li, Mg, Na, Ni, Si and H. For quantification, calibration-free method was used. Only ten elements, namely Ti, W, Fe, Cr, Cu, Ca, Mg, Ni, Si and Al, were quantified with relative weight concentrations of 55.39%, 18.79%, 18.30%, 4.05%, 2.66, 0.43%, 0.18%, 0.12%, 0.06% and 0.02%, respectively. To benchmark these results, XRF analysis was performed, which confirmed the presence of all the elements detected in the optical spectrum of the sample, except for Na, Li, and H. The concentrations of these ten elements as measured by XRF were in reasonable agreement, especially for the major elements. The presence of a significant amount of Ti and W in an astrophyllite sample, found in Pakistan, highlights the economic value of this mineral. This study may be of further interest in commissioning LIBS technology for exploration of minerals in the region.
  12. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
  13. Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, et al.
    Environ Pollut, 2023 Feb 15;319:120979.
    PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979
    Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
  14. Asyraf MRM, Rafidah M, Madenci E, Özkılıç YO, Aksoylu C, Razman MR, et al.
    Materials (Basel), 2023 Feb 20;16(4).
    PMID: 36837376 DOI: 10.3390/ma16041747
    Fibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.
  15. Illahi U, Iqbal J, Irfan M, Ismail Sulaiman M, Khan MA, Rauf A, et al.
    Sensors (Basel), 2022 Jul 25;22(15).
    PMID: 35898037 DOI: 10.3390/s22155531
    In this article, a rectangular dielectric resonator antenna (RDRA) with circularly polarized (CP) response is presented for 5G NR (New Radio) Sub-6 GHz band applications. A uniquely shaped conformal metal feeding strip is proposed to excite the RDRA in higher-order mode for high gain utilization. By using the proposed feeding mechanism, the degenerate mode pair of the first higher-order, i.e., TEδ13x at 4.13 GHz and TE1δ3y, at 4.52 GHz is excited to achieve a circularly polarized response. A circular polarization over a bandwidth of ~10%, in conjunction with a wide impedance matching over a bandwidth of ~17%, were attained by the antenna. The CP antenna proposed offers a useful gain of ~6.2 dBic. The achieved CP bandwidth of the RDRA is good enough to cover the targeted 5G NR bands around 4.4−4.8 GHz, such as n79. The proposed antenna configuration is modelled and optimized using computer simulation technology (CST). A prototype was built to confirm (validate) the performance estimated through simulation. A good agreement was observed between simulated and measured results.
  16. Butt MD, Ong SC, Wahab MU, Rasool MF, Saleem F, Hashmi A, et al.
    Int J Environ Res Public Health, 2022 Oct 02;19(19).
    PMID: 36231911 DOI: 10.3390/ijerph191912611
    BACKGROUND: Diabetes is a major chronic illness that negatively influences individuals and society. Therefore, this research aimed to analyze and evaluate the cost associated with diabetes management, specific to the Pakistani Type 2 diabetes population. Research scheme and methods: A survey randomly collected information and data from diabetes patients throughout Pakistan out-patient clinics. Direct and indirect costs were evaluated, and data were analyzed with descriptive and inferential statistics.

    RESULTS: An overall of 1839 diabetes patients participated in the study. The results have shown that direct and indirect costs are positively associated with the participants' socio-demographic characteristics, except for household income and educational status. The annual total cost of diabetes care was USD 740.1, amongst which the share of the direct cost was USD 646.7, and the indirect cost was USD 93.65. Most direct costs comprised medicine (USD 274.5) and hospitalization (USD 319.7). In contrast, the productivity loss of the patients had the highest contribution to the indirect cost (USD 81.36).

    CONCLUSION: This study showed that direct costs significantly contributed to diabetes's overall cost in Pakistan and overall diabetes management estimated to be 1.67% (USD 24.42 billion) of the country's total gross domestic product. The expense of medications and hospitalization mostly drove the direct cost. Additionally, patients' loss of productivity contributed significantly to the indirect cost. It is high time for healthcare policymakers to address this huge healthcare burden. It is time to develop a thorough diabetes management plan to be implemented nationwide.

  17. Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, et al.
    Chemosphere, 2023 Mar;318:137924.
    PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924
    Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
  18. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Muhammad S, Raza H, et al.
    RSC Adv, 2023 May 02;13(20):13798-13808.
    PMID: 37197574 DOI: 10.1039/d3ra01348k
    Considering the varied pharmacological prominence of thiazole and oxadiazole heterocyclic moieties, a unique series of bi-heterocyclic hybrids, 8a-h, was synthesized in a convergent manner. The structures of newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, and IR spectral studies. The structure-activity relationship of these compounds was predicted by examining their inhibitory effects against alkaline phosphatase, whereby all these molecules exhibited superb inhibitory potentials relative to the standard used. The kinetics mechanism was determined by Lineweaver-Burk plots which revealed that 8g inhibited the studied enzyme non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.42 μM. The allosteric computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal mol-1). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules have potential to be nontoxic medicinal scaffolds for the treatment of alkaline phosphate-associated ailments.
  19. Hussain S, Javed W, Tajammal A, Khalid M, Rasool N, Riaz M, et al.
    ACS Omega, 2023 May 16;8(19):16600-16611.
    PMID: 37214690 DOI: 10.1021/acsomega.2c06785
    Current studies were performed to investigate the phytochemistry, synergistic antibacterial, antioxidant, and hemolytic activities of ethanolic and aqueous extracts of Azadirachta indica (EA and WA) and Cymbopogon citratus (EC and WC) leaves. Fourier transform infrared data verified the existence of alcoholic, carboxylic, aldehydic, phenyl, and bromo moieties in plant leaves. The ethanolic extracts (EA and EC) were significantly richer in phenolics and flavonoids as compared to the aqueous extracts (WA and WC). The ethanolic extract of C. citratus (EC) contained higher concentrations of caffeic acid (1.432 mg/g), synapic acid (6.743 mg/g), and benzoic acid (7.431 mg/g) as compared to all other extracts, whereas chlorogenic acid (0.311 mg/g) was present only in the aqueous extract of A. indica (WA). Food preservative properties of C. citratus can be due to the presence of benzoic acid (7.431 mg/g). -Gas chromatography-mass spectrometry analysis demonstrated the presence of 36 and 23 compounds in A. indica and C. citratus leaves, respectively. Inductively coupled plasma analysis was used to determine the concentration of 26 metals (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sn, Sr, V, Zn, Zr, Ti); the metal concentrations were higher in aqueous extracts as compared to the ethanolic extracts. The extracts were generally richer in calcium (3000-7858 ppm), potassium (13662-53,750 ppm), and sodium (3181-8445 ppm) and hence can be used in food supplements as a source of these metals. Antioxidant potential (DDPH method) of C. citratus ethanolic extract was the highest (74.50 ± 0.66%), whereas it was the lowest (32.22 ± 0.28%) for the aqueous extract of A. indica. Synergistic inhibition of bacteria (Staphylococcus aureus and Escherichia coli) was observed when the aqueous extracts of both the plants were mixed together in certain ratios (v/v). The highest antibacterial potential was exhibited by the pure extract of C. citratus, which was even higher than that of the standard drug (ciprofloxacin). The plant extracts and their mixtures were more active against S. aureus as compared to E. coli. No toxic hemolytic effects were observed for the investigated extracts indicating their safe medicinal uses for human beings.
  20. Patellongi I, Amiruddin A, Massi MN, Islam AA, Pratama MY, Sutandyo N, et al.
    Ann Med Surg (Lond), 2023 Aug;85(8):3806-3815.
    PMID: 37554919 DOI: 10.1097/MS9.0000000000001061
    The high mortality rate in breast cancer (BC) patients is generally due to metastases resistant to systemic therapy. Two causes of systemic therapy resistance in BC patients are circulating miRNAs-221 and miR-222, leading to improved BC cell proliferation, survival, and reduced cell apoptosis. This study investigated the miRNA expression changes associated with cancer cell resistance to tamoxifen therapy and is expected to be clinically meaningful before providing endocrine therapy to luminal-type BC patients who express them.

    METHODS: This case-control research included individuals with the luminal subtype of BC who had received tamoxifen medication for around one year. Furthermore, the case group contained 15 individuals with local recurrence or metastases, while the control group comprised 19 patients without local recurrence or metastases. Plasma miR-221/222 quantification was performed with real-time PCR using transcript-specific primers.

    RESULTS: A significant difference was found in circulating miR-221 expression between cases and controls (P=0.005) but not in miR-222 expression (P=0.070). There were no significant differences between miR-221/222 expression, progesterone receptor, Ki67 protein levels, lymphovascular invasion, and stage. However, receiver operator characteristic curve analyses showed miR-221/222 expressions predictive of tamoxifen resistance (P=0.030) with a sensitivity of 60.00 and a specificity of 83.33%.

    CONCLUSION: The use of circulating miR-221/222 expression can predict relapse as well as resistance to tamoxifen treatment in BC patients, and their testing is recommended for luminal subtype BC patients who will undergo tamoxifen therapy to determine their risk of tamoxifen resistance early, increasing treatment effectiveness.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links