Displaying publications 821 - 840 of 951 in total

Abstract:
Sort:
  1. Neoh CH, Lam CY, Lim CK, Yahya A, Ibrahim Z
    Environ Sci Pollut Res Int, 2014 Mar;21(6):4397-408.
    PMID: 24327114 DOI: 10.1007/s11356-013-2350-1
    Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  2. Bae N, Li L, Lödl M, Lubec G
    Proc Natl Acad Sci U S A, 2012 Oct 30;109(44):17920-4.
    PMID: 23071323 DOI: 10.1073/pnas.1209632109
    Protein profiling has revealed the presence of glacontryphan-M, a peptide toxin identified only in the sea snail genus Conus, in the wings of Hebomoia glaucippe (HG). The wings and body of HG were homogenized and the proteins were extracted and analyzed by 2D gel electrophoresis with subsequent in-gel digestion. Posttranslational protein modifications were detected and analyzed by nano-LC-MS/MS. An antibody was generated against glacontryphan-M, and protein extracts from the wings of HG samples from Malaysia, Indonesia, and the Philippines were tested by immunoblotting. Glacontryphan-M was unambiguously identified in the wings of HG containing the following posttranslational protein modifications: monoglutamylation at E55, methylation at E53, quinone modification at W61, cyanylation at C56, and amidation of the C terminus at G63. Immunoblotting revealed the presence of the toxin in the wings of HG from all origins, showing a single band for glacontryphan-M in HG samples from Malaysia and Philippines and a double band in HG samples from Indonesia. Intriguingly, sequence analysis indicated that the Conus glacontryphan is identical to that of HG. The toxin may function as a defense against diverse predators, including ants, mantes, spiders, lizards, green frogs, and birds.
    Matched MeSH terms: Tandem Mass Spectrometry
  3. Riazi M, Zainul FZ, Bahaman AR, Amran F, Khalilpour A
    Indian J Med Res, 2014 Feb;139(2):308-13.
    PMID: 24718408
    Leptospirosis is a widespread zoonotic disease and a public health problem, particularly in tropical and subtropical countries. Varied clinical manifestations of the disease frequently lead to misdiagnosis resulting in life-threatening multi-organ complications. Therefore, early laboratory investigation using an appropriate diagnostic approach is crucial. In the present study, a potential protein marker was identified and evaluated for its usefulness in the serodiagnosis of acute leptospirosis.
    Matched MeSH terms: Mass Spectrometry
  4. Ceesay A, Nor Shamsudin M, Aliyu-Paiko M, Ismail IS, Nazarudin MF, Mohamed Alipiah N
    Biomed Res Int, 2019;2019:2640684.
    PMID: 31119160 DOI: 10.1155/2019/2640684
    The aim of the present study was to extract and characterize bioactive components from separate body organs of Holothuria leucospilota. Preliminary qualitative assessment of the crude extracts was positive for phenols, terpenoids, carbohydrates, flavonoids, saponins, glycosides, cardiac glycosides, steroids, phlobatannins, and tannins in all body organs evaluated. Phenolics were the most abundant group of bioactives accounting for approximately 80%. The extraction solvent mixtures that yielded most compounds evaluated were methanol/acetone (3:1, v:v) and methanol/distilled water (3:1, v:v). In other analyses, GC-MS data revealed diverse metabolic and biologically active compounds, where those in high concentrations included 2-Pentanone, 4-hydroxy-4-methyl- among the ketones; phenol- 2,4-bis(1,1-dimethylethyl)-, a phenol group; and 2-Chlorooctane, a hydrocarbon. Among FA and their methyl/ethyl esters, n-hexadecanoic acid, 5,8,11,14-eicosatetraenoic acid ethyl ester (arachidonic acid), and 5,8,11,14,17-eicosapentaenoic acid methyl ester (EPA) were among the most abundant FAMEs accounting for approximately 50% of the subgroups measured. Data from GC-FID analysis revealed methyl laurate (C12:0), methyl myristate (C14:0), methyl palmitate (C16:0), and methyl stearate (18:0) methyl esters as the most abundant saturated FA, whereas cis-9-oleic methyl ester (C18:1) and methyl linoleate (C18:2) were found as the major monounsaturated FA and PUFA FAMEs, respectively, in the body wall of the species. Taken together, the extraction and characterization of different categories of metabolically and biologically active compounds in various organ extracts of H. leucospilota suggest that the species is potentially a rich source of cholesterol-lowering, antioxidant, antimicrobial, and anticancer agents. These substances are known to benefit human health and assist in disease prevention. These findings justify the use of sea cucumbers in traditional folklore medication and the current interest and attention focused on the species to mine for bioactives in new drugs research.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  5. Nayan N, van Erven G, Kabel MA, Sonnenberg AS, Hendriks WH, Cone JW
    J Sci Food Agric, 2019 Jun;99(8):4054-4062.
    PMID: 30737799 DOI: 10.1002/jsfa.9634
    BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw.

    RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.

    CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  6. Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N
    PLoS One, 2019;14(5):e0197644.
    PMID: 31145747 DOI: 10.1371/journal.pone.0197644
    Stone fish is an under-utilized sea cucumber with many health benefits. Hydrolysates with strong ACE-inhibitory effects were generated from stone fish protein under the optimum conditions of hydrolysis using bromelain and fractionated based on hydrophobicity and isoelectric properties of the constituent peptides. Five novel peptide sequences with molecular weight (mw) < 1000 daltons (Da) were identified using LC-MS/MS. The peptides including Ala-Leu-Gly-Pro-Gln-Phe-Tyr (794.44 Da), Lys-Val-Pro-Pro-Lys-Ala (638.88 Da), Leu-Ala-Pro-Pro-Thr-Met (628.85 Da), Glu-Val-Leu-Ile-Gln (600.77 Da) and Glu-His-Pro-Val-Leu (593.74 Da) were evaluated for ACE-inhibitory activity and showed IC50 values of 0.012 mM, 0.980 mM, 1.310 mM, 1.440 mM and 1.680 mM, respectively. The ACE-inhibitory effects of the peptides were further verified using molecular docking study. The docking results demonstrated that the peptides exhibit their effect mainly via hydrogen and electrostatic bond interactions with ACE. These findings provide evidence about stone fish as a valuable source of raw materials for the manufacture of antihypertensive peptides that can be incorporated to enhance therapeutic relevance and commercial significance of formulated functional foods.
    Matched MeSH terms: Tandem Mass Spectrometry
  7. Hematpoor A, Liew SY, Chong WL, Azirun MS, Lee VS, Awang K
    PLoS One, 2016;11(5):e0155265.
    PMID: 27152416 DOI: 10.1371/journal.pone.0155265
    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.
    Matched MeSH terms: Mass Spectrometry
  8. Obón-Santacana M, Lujan-Barroso L, Freisling H, Cadeau C, Fagherazzi G, Boutron-Ruault MC, et al.
    Eur J Nutr, 2017 Apr;56(3):1157-1168.
    PMID: 26850269 DOI: 10.1007/s00394-016-1165-5
    PURPOSE: Acrylamide was classified as 'probably carcinogenic' to humans in 1994 by the International Agency for Research on Cancer. In 2002, public health concern increased when acrylamide was identified in starchy, plant-based foods, processed at high temperatures. The purpose of this study was to identify which food groups and lifestyle variables were determinants of hemoglobin adduct concentrations of acrylamide (HbAA) and glycidamide (HbGA) in 801 non-smoking postmenopausal women from eight countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    METHODS: Biomarkers of internal exposure were measured in red blood cells (collected at baseline) by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) . In this cross-sectional analysis, four dependent variables were evaluated: HbAA, HbGA, sum of total adducts (HbAA + HbGA), and their ratio (HbGA/HbAA). Simple and multiple regression analyses were used to identify determinants of the four outcome variables. All dependent variables (except HbGA/HbAA) and all independent variables were log-transformed (log2) to improve normality. Median (25th-75th percentile) HbAA and HbGA adduct levels were 41.3 (32.8-53.1) pmol/g Hb and 34.2 (25.4-46.9) pmol/g Hb, respectively.

    RESULTS: The main food group determinants of HbAA, HbGA, and HbAA + HbGA were biscuits, crackers, and dry cakes. Alcohol intake and body mass index were identified as the principal determinants of HbGA/HbAA. The total percent variation in HbAA, HbGA, HbAA + HbGA, and HbGA/HbAA explained in this study was 30, 26, 29, and 13 %, respectively.

    CONCLUSIONS: Dietary and lifestyle factors explain a moderate proportion of acrylamide adduct variation in non-smoking postmenopausal women from the EPIC cohort.

    Matched MeSH terms: Tandem Mass Spectrometry
  9. Stepien M, Keski-Rahkonen P, Kiss A, Robinot N, Duarte-Salles T, Murphy N, et al.
    Int J Cancer, 2021 Feb 01;148(3):609-625.
    PMID: 32734650 DOI: 10.1002/ijc.33236
    Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. Current knowledge on metabolic perturbations in HCC is derived mostly from case-control designs, with sparse information from prospective cohorts. Our objective was to apply comprehensive metabolite profiling to detect metabolites whose serum concentrations are associated with HCC development, using biological samples from within the prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (>520 000 participants), where we identified 129 HCC cases matched 1:1 to controls. We conducted high-resolution untargeted liquid chromatography-mass spectrometry-based metabolomics on serum samples collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic regression was applied controlling for dietary habits, alcohol consumption, smoking, body size, hepatitis infection and liver dysfunction. Corrections for multiple comparisons were applied. Of 9206 molecular features detected, 220 discriminated HCC cases from controls. Detailed feature annotation revealed 92 metabolites associated with HCC risk, of which 14 were unambiguously identified using pure reference standards. Positive HCC-risk associations were observed for N1-acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, l,l-cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid and 7-methylguanine. Inverse risk associations were observed for retinol, dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl hydroxychroman and creatine. Discernible differences for these metabolites were observed between cases and controls up to 10 years prior to diagnosis. Our observations highlight the diversity of metabolic perturbations involved in HCC development and replicate previous observations (metabolism of bile acids, amino acids and phospholipids) made in Asian and Scandinavian populations. These findings emphasize the role of metabolic pathways associated with steroid metabolism and immunity and specific dietary and environmental exposures in HCC development.
    Matched MeSH terms: Mass Spectrometry
  10. Ezzat SM, Ezzat MI, Okba MM, Hassan SM, Alkorashy AI, Karar MM, et al.
    PMID: 31275418 DOI: 10.1155/2019/7543460
    Eurycoma longifolia Jack (Fam.: Simaroubaceae), known as Tongkat Ali (TA), has been known as a symbol of virility and sexual power for men. Metabolic profiling of the aqueous extract of E. longifolia (AEEL) using UPLC-MS/MS in both positive and negative modes allowed the identification of seventeen metabolites. The identified compounds were classified into four groups: quassinoids, alkaloids, triterpenes, and biphenylneolignans. AEEL is considered safe with oral LD50 cut-off >5000 mg/kg. Oral administration of 50, 100, 200, 400, or 800 mg/kg of AEEL for 10 consecutive days to Sprague-Dawley male rats caused significant reductions in mounting, intromission, and ejaculation latencies and increased penile erection index. AEEL increased total body weight and relative weights of seminal vesicles and prostate. Total and free serum testosterone and brain cortical and hippocampal dopamine content was significantly elevated in treated groups with no significant effects on serotonin or noradrenaline content.
    Matched MeSH terms: Tandem Mass Spectrometry
  11. Koay SY, Gam LH
    J Chromatogr B Analyt Technol Biomed Life Sci, 2011 Jul 15;879(22):2179-83.
    PMID: 21689998 DOI: 10.1016/j.jchromb.2011.05.041
    Orthosiphon aristatus is a traditionally used medicinal plant. In order to study the proteome of the plant, we have developed a simple plant protein extraction method by direct extraction of protein using a modified 2D-gel compatible tris-sucrose buffer followed by a double TCA-acetone precipitation. This method omitted the use of toxic phenol which is widely used in the studies of plants proteins. Moreover, it shortens the lengthy extraction procedure of phenol extraction and back-extraction method and therefore reduced the extraction time (by 2h) while increased in protein yields (by 50%). Comparison of the 2D-gel images of the two extracts revealed that >60 extra protein spots were detected in the extract of our current method. The method was applied on the leaves of O. aristatus collected from six geographical areas in Malaysia. The correlation coefficient of each replicate gels from the six areas ranged from 0.70 to 0.90 indicating good reproducibility of the method.
    Matched MeSH terms: Tandem Mass Spectrometry
  12. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Tandem Mass Spectrometry
  13. Abdullah S, Oh YS, Kwak MK, Chong K
    J Microbiol, 2021 Feb;59(2):164-174.
    PMID: 33355891 DOI: 10.1007/s12275-021-0551-8
    There have been relatively few studies which support a link between Ganoderma boninense, a phytopathogenic fungus that is particularly cytotoxic and pathogenic to plant tissues and roots, and antimicrobial compounds. We previously observed that liquid-liquid extraction (LLE) using chloroformmethanol-water at a ratio (1:1:1) was superior at detecting antibacterial activities and significant quantities of antibacterial compounds. Herein, we demonstrate that antibacterial secondary metabolites are produced from G. boninense mycelia. Antibacterial compounds were monitored in concurrent biochemical and biophysical experiments. The combined methods included high performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The antibacterial compounds derived from mycelia with chloroform-methanol extraction through LLE were isolated via a gradient solvent elution system using HPTLC. The antibacterial activity of the isolated compounds was observed to be the most potent against Staphylococcus aureus ATCC 25923 and multidrug-resistant S. aureus NCTC 11939. GC-MS, HPLC, and FTIR analysis confirmed two antibacterial compounds, which were identified as 4,4,14α-trimethylcholestane (m/z = 414.75; lanostane, C30H54) and ergosta-5,7,22-trien-3β-ol (m/z = 396.65; ergosterol, C28H44O). With the aid of spectroscopic evaluations, ganoboninketal (m/z = 498.66, C30H42O6), which belongs to the 3,4-seco-27-norlanostane triterpene family, was additionally characterized by 2D-NMR analysis. Despite the lack of antibacterial potential exhibited by lanostane; both ergosterol and ganoboninketal displayed significant antibacterial activities against bacterial pathogens. Results provide evidence for the existence of bioactive compounds in the mycelia of the relatively unexplored phytopathogenic G. boninense, together with a robust method for estimating the corresponding potent antibacterial secondary metabolites.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  14. Mu AK, Bee PC, Lau YL, Chen Y
    Int J Mol Sci, 2014;15(11):19952-61.
    PMID: 25372941 DOI: 10.3390/ijms151119952
    Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.
    Matched MeSH terms: Tandem Mass Spectrometry
  15. Yibadatihan S, Jinap S, Mahyudin NA
    PMID: 25396715 DOI: 10.1080/19440049.2014.978396
    Palm kernel cake (PKC) is a useful source of protein and energy for livestock. Recently, it has been used as an ingredient in poultry feed. Mycotoxin contamination of PKC due to inappropriate handling during production and storage has increased public concern about economic losses and health risks for poultry and humans. This concern has accentuated the need for the evaluation of mycotoxins in PKC. Furthermore, a method for quantifying mycotoxins in PKC has so far not been established. The aims of this study were therefore (1) to develop a method for the simultaneous determination of mycotoxins in PKC and (2) to validate and verify the method. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using an electrospray ionisation interface (ESI) in both positive- and negative-ion modes was developed for the simultaneous determination of aflatoxins (AFB₁, AFB₂, AFG₁ and AFG₂), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB₁ and FB₂), T-2 and HT-2 toxin in PKC. An optimum method using a 0.2 ml min⁻¹ flow rate, 0.2% formic acid in aqueous phase, 10% organic phase at the beginning and 90% organic phase at the end of the gradient was achieved. The extraction of mycotoxins was performed using a solvent mixture of acetonitrile-water-formic acid (79:20:1, v/v) without further clean-up. The mean recoveries of mycotoxins in spiked PKC samples ranged from 81% to 112%. Limits of detection (LODs) and limits of quantification (LOQs) for mycotoxin standards and PKC samples ranged from 0.02 to 17.5 μg kg⁻¹ and from 0.06 to 58.0 μg kg⁻¹, respectively. Finally, the newly developed method was successfully applied to PKC samples. The results illustrated the fact that the method is efficient and accurate for the simultaneous multi-mycotoxin determination in PKC, which can be ideal for routine analysis.
    Matched MeSH terms: Tandem Mass Spectrometry
  16. Tan WS, Muhamad Yunos NY, Tan PW, Mohamad NI, Adrian TG, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:828971.
    PMID: 25197715 DOI: 10.1155/2014/828971
    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry.
    Matched MeSH terms: Tandem Mass Spectrometry
  17. Lay MM, Karsani SA, Malek SN
    Biomed Res Int, 2014;2014:468157.
    PMID: 24579081 DOI: 10.1155/2014/468157
    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  18. Al-Obaidi JR, Mohd-Yusuf Y, Razali N, Jayapalan JJ, Tey CC, Md-Noh N, et al.
    Int J Mol Sci, 2014;15(3):5175-92.
    PMID: 24663087 DOI: 10.3390/ijms15035175
    Basal stem rot is a common disease that affects oil palm, causing loss of yield and finally killing the trees. The disease, caused by fungus Ganoderma boninense, devastates thousands of hectares of oil palm plantings in Southeast Asia every year. In the present study, root proteins of healthy oil palm seedlings, and those infected with G. boninense, were analyzed by 2-dimensional gel electrophoresis (2-DE). When the 2-DE profiles were analyzed for proteins, which exhibit consistent significant change of abundance upon infection with G. boninense, 21 passed our screening criteria. Subsequent analyses by mass spectrometry and database search identified caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, enolase, fructokinase, cysteine synthase, malate dehydrogenase, and ATP synthase as among proteins of which abundances were markedly altered.
    Matched MeSH terms: Tandem Mass Spectrometry
  19. Yeong LT, Abdul Hamid R, Saiful Yazan L, Khaza'ai H, Awang Hamsin DE
    Nat Prod Res, 2014;28(22):2026-30.
    PMID: 24836304 DOI: 10.1080/14786419.2014.917415
    An isomeric mixture of α,β-amyrin (triterpene) and 2-methoxy-6-undecyl-1,4-benzoquinone (quinone) isolated from the Ardisia crispa root hexane (ACRH) extract was reported to possess anti-inflammatory properties in vivo. Considering the close association between inflammation and cancer, on top of the lack of antitumour study on those compounds, this study aimed to determine the potential of both compounds against tumour promotion in vitro, either as single agent or in combination. Triterpene and quinone compounds, as well as triterpene-quinone fraction (TQF) and ACRH were subjected to inhibition of Epstein-Barr virus-early antigen (EBV-EA) activation assay for that purpose. Compared with curcumin (positive control), inhibition against EBV-EA activation occurred in the order: ACRH>TQF ≥ curcumin>α,β-amyrin ≥ 2-methoxy-6-undecyl-1,4-benzoquinone. These findings reported, for the first time, the antitumor-promoting effect of α,β-amyrin and 2-methoxy-6-undecyl-1,4-benzoquinone from the roots of A. crispa, which was enhanced when both compounds act in synergy.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  20. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Noor NM, et al.
    FEMS Microbiol Lett, 2014 Jun;355(2):177-84.
    PMID: 24828482 DOI: 10.1111/1574-6968.12469
    Isoprenoids are a large, diverse group of secondary metabolites which has recently raised a renewed research interest due to genetic engineering advances, allowing specific isoprenoids to be produced and characterized in heterologous hosts. Many researches on metabolic engineering of heterologous hosts for increased isoprenoid production are focussed on Escherichia coli and yeasts. E. coli, as most prokaryotes, use the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway for isoprenoid production. Yeasts on the other hand, use the mevalonate pathway which is commonly found in eukaryotes. However, Lactococcus lactis is an attractive alternative host for heterologous isoprenoid production. Apart from being food-grade, this Gram-positive prokaryote uses the mevalonate pathway for isoprenoid production instead of the MEP pathway. Previous studies have shown that L. lactis is able to produce sesquiterpenes through heterologous expression of plant sesquiterpene synthases. In this work, we analysed the gene expression of the lactococcal mevalonate pathway through RT-qPCR to successfully engineer L. lactis as an efficient host for isoprenoid production. We then overexpressed the mvk gene singly or co-expressed with the mvaA gene as an attempt to increase β-sesquiphellandrene production in L. lactis. It was observed that co-expression of mvk with mvaA doubled the amount of β-sesquiphellandrene produced.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links