RESULTS: Karyotypic analysis confirmed that all 93 animals phenotypically identified as swamp buffaloes with 48 chromosomes, all 7 as crossbreds with 49 chromosomes, and all 5 as murrah buffaloes with 50 chromosomes. The D-loop of mitochondrial DNA analysis showed that 10 haplotypes were observed with haplotype diversity of 0.8000 ± 0.089. Sequence characterization revealed 72 variables sites in which 67 were parsimony informative sites with sequence diversity of 0.01906. The swamp and murrah buffaloes clearly formed 2 different clades in the phylogenetic tree, indicating clear maternal divergence from each other. The crossbreds were grouped within the swamp buffalo clade, indicating the dominant maternal swamp buffalo gene in the crossbreds.
CONCLUSION: Thus, the karyotyping could be used to differentiate the water buffaloes while genotypic analysis could be used to characterize the water buffaloes and their crossbreds.
METHODS: H. contortus specimens (n = 57) were isolated from wild blue sheep (Pseudois nayaur) inhabiting Helan Mountains (HM), China and additional H. contortus specimens (n = 20) were isolated from domestic sheep that were grazed near the natural habitat of the blue sheep. Complete ITS2 (second internal transcribed spacer) sequences and partial sequences of the nad4 (nicotinamide dehydrogenase subunit 4 gene) gene were amplified to determine the sequence variations and population genetic diversities between these two populations. Also, 142 nad4 haplotype sequences of H. contortus from seven other geographical regions of China were retrieved from database to further examine the H. contortus population structure.
RESULTS: Sequence analysis revealed 10 genotypes (ITS2) and 73 haplotypes (nad4) among the 77 specimens, with nucleotide diversities of 0.007 and 0.021, respectively, similar to previous studies in other countries, such as Pakistan, Malaysia and Yemen. Phylogenetic analyses (BI, MP, NJ) of nad4 sequences showed that there were no noticeable boundaries among H. contortus populations from different geographical origin and population genetic analyses revealed that most of the variation (94.21%) occurred within H. contortus populations. All phylogenetic analyses indicated that there was little genetic differentiation but a high degree of gene flow among the H. contortus populations among wild blue sheep and domestic ruminants in China.
CONCLUSIONS: The current work is the first genetic characterization of H. contortus isolated from wild blue sheep in the Helan Mountains region. The results revealed a low genetic differentiation and high degree of gene flow between the H. contortus populations from sympatric wild blue sheep and domestic sheep, indicating regular cross-infection between the sympatrically reared ruminants.