Limonia acidissima or Hesperethusa crenulata is a common tree in Southeast Asia. It is indigenous to the Republic of Myanmar (formerly Burma) as well as India, Sri Lanka, Java, and Pakistan. In English, the common names for Limonia acidissima are sandalwood, wood-apple, elephant-apple, monkey fruit, and curd fruit tree. The plant has a number of different names in different languages including bal or bael in Assamese, bael in Bengali, kaitha in Hindi, belingai in Malaysia, and thanaka in Burmese. Unique to the Burmese people, thanaka has been used as a cosmetic product for over 2000 years. Mention of thanaka has been traced back to ancient Burmese lyrics, and relics of equipment used by ancient royalty to grind thanaka can be found in museums.
Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively.
Two new acridone alkaloids, chlorospermines A and B (1 and 2), were isolated from the stem bark of Glycosmis chlorosperma, together with the known atalaphyllidine (3) and acrifoline (4), by means of bioguided isolation using an in vitro enzyme assay against DYRK1A. Acrifoline (4) and to a lesser extent chlorospermine B (2) and atalaphyllidine (3) showed significant inhibiting activity on DYRK1A with IC50's of 0.075, 5.7, and 2.2 μM, respectively. Their selectivity profile was evaluated against a panel of various kinases, and molecular docking calculations provided structural details for the interaction between these compounds and DYRK1A.
Dillenia (Dilleniaceae) is a genus of about 100 species of flowering plants in tropical and subtropical trees of Southern Asia, Australasia, and the Indian Ocean Islands. Until now, only eight Dillenia species have been reported to be used traditionally in different countries for various medical purposes. Out of eight species, D. pentagyna (Roxb), D. indica (Linn.) and D. suffruticosa (Griffith Ex. Hook. F. & Thomsom Martelli) have been reported to be used to treat cancerous growth.
This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system.
Angiotensin I-converting enzyme (ACE) inhibitors derived from foods are valuable auxiliaries to agents such as captopril. Eight highly functional ACE inhibitory peptides from the mushroom, Agaricus bisporus, were identified by LC-MS/MS. Among these peptides, the most potent ACE inhibitory activity was exhibited by AHEPVK, RIGLF and PSSNK with IC₅₀ values of 63, 116 and 129 μM, respectively. These peptides exhibited high ACE inhibitory activity after gastrointestinal digestion. Lineweaver-Burk plots suggested that AHEPVK and RIGLF act as competitive inhibitors against ACE, whereas PSSNK acts as a non-competitive inhibitor. Mushrooms can be a good component of dietary supplement due to their readily available source and, in addition, they rarely cause food allergy. Compared to ACE inhibitory peptides isolated from other edible mushrooms, AHEPVK, RIGLF and PSSNK have lower IC₅₀ values. Therefore, these peptides may serve as an ideal ingredient in the production of antihypertensive supplements.
The enhancement of lignocellulose hydrolysis using enzyme complexes requires an efficient pretreatment process to obtain susceptible conditions for the enzyme attack. This study focuses on removing a major part of the lignin layer from kenaf (Hibiscus cannabinus) while simultaneously maintaining most of the hemicellulose. A two-stage pretreatment process is adopted using calcium hydroxide, Ca(OH)₂, and peracetic acid, PPA, to break the recalcitrant lignin layer from other structural polysaccharides. An experimental screening of several pretreatment chemicals, concentrations, temperatures and solid-liquid ratios enabled the production of an optimally designed pretreatment process for kenaf. Our results showed that the pretreatment process has provide 59.25% lignin removal while maintaining 87.72% and 96.17% hemicellulose and cellulose, respectively, using 1g of Ca(OH)₂/L and a 8:1 (mL:g) ratio of liquid-Ca(OH)₂ at 50 °C for 1.5 h followed by 20% peracetic acid pretreatment at 75 °C for 2 h. These results validate this mild approach for aiding future enzymatic hydrolysis.
In searching for symbionts derived from bioactive natural products, six sulfureous diketopiperazines designated as lasiodiplines A-F (1-6) were characterized from the culture of Lasiodiplodia pseudotheobromae F2, previously residing in the apparently normal flower of Illigera rhodantha (Hernandiaceae). Identification of structures was accomplished by a combination of spectroscopic and computational approaches, in conjunction with the low-temperature (100K) single-crystal X-ray diffraction with Cu Kα radiation. Lasiodipline E (5) was demonstrated to be antibacterial against the clinical strains Streptococcus sp., Bacteroides vulgates, Peptostreptococcus sp. and Veillonella parvula, respectively, with an minimum inhibitory concentration (MIC) range of 0.12-0.25 μg/mL. In addition, compounds 4 and 6 exemplify two unusual architectures of natural cyclodipeptides, signifying the unique biochemical characteristics of the producing fungus.
To date, the number of published reports on the large-volume preparation of polymer-based monolithic chromatography adsorbents is still lacking and is of great importance. Many critical factors need to be considered when manufacturing a large-volume polymer-based monolith for chromatographic applications. Structural integrity, validity, and repeatability are thought to be the key factors determining the usability of a large-volume monolith in a separation process. In this review, we focus on problems and solutions pertaining to heat dissipation, pore size distribution, "wall channel" effect, and mechanical strength in monolith preparation. A template-based method comprising sacrificial and nonsacrificial techniques is possibly the method of choice due to its precise control over the porous structure. However, additional expensive steps are usually required for the template removal. Other strategies in monolith preparation are also discussed.
In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N-hexanoylhomoserine lactone (C6-HSL) and N-octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs.
In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
Studies on microsporidial infection mostly focus on immunodeficiency or immunosuppressive individuals. Therefore, this cross-sectional study describes the prevalence and risk factors of microsporidiosis among asymptomatic individuals in Malaysia.
Different extraction conditions were applied to investigate the effect of temperature, extraction time and substrate-extractant ratio on pectin extraction from cocoa husks. Pectin was extracted from cocoa husks using water, citric acid at pH 2.5 or 4.0, or hydrochloric acid at pH 2.5 or 4.0. Temperature, extraction time and substrate-extractant ratio affected the yields, uronic acid contents, degrees of methylation (DM) and degrees of acetylation (DA) of the extracted pectins using the five extractants differently. The yields and uronic acid contents of the extracted pectins ranged from 3.38-7.62% to 31.19-65.20%, respectively. The DM and DA of the extracted pectins ranged from 7.17-57.86% to 1.01-3.48%, respectively. The highest yield of pectin (7.62%) was obtained using citric acid at pH 2.5 [1:25 (w/v)] at 95 °C for 3.0 h. The highest uronic acid content (65.20%) in the pectin was obtained using water [1:25 (w/v)] at 95 °C for 3.0 h.
Recent reports from New Zealand indicate Neospora caninum has a possible role in causing abortions in sheep. Transmission of N. caninum via semen has been documented in cattle. This study aimed to investigate if horizontal transmission through semen was also possible in sheep. Initially, 6-month old crossbred ram lambs (n=32), seronegative to N. caninum, were divided into 4 equal groups. Group 1 remained uninoculated whilst the remainder were inoculated with N. caninum tachyzoites intravenously as follows: Group 2 - 50 tachyzoites; Group 3 - 10(3) tachyzoites; Group 4 - 10(7) tachyzoites. Semen samples were collected weekly for 8 weeks for the detection of N. caninum DNA and quantified using quantitative PCR (qPCR). Plasma collected 1 month post-inoculation was subjected to ELISA (IDEXX Chekit) and Western blot. At 2 weeks post-infection, three rams from Group 1 (uninoculated) and three rams from Group 4 (10(7)tachyzoites/ml) were mated with two groups of 16 ewes over two oestrus cycles. Ewe sera collected 1 and 2 months post-mating were tested for seroconversion by ELISA and Western blot. All experimentally infected rams seroconverted by 1 month with ELISA S/P% values ranging from 11% to 36.5% in Group 2, 12-39.5% in Group 3 and 40-81% in Group 4. However, none of the ewes mated with the experimentally infected rams seroconverted. For the Western blot, responses towards immunodominant antigens (IDAs) were observed in ram sera directed against proteins at 10, 17, 21, 25-29, 30, 31, 33 and 37 kDa. Rams in Group 2, 3 and 4 were noted to have at least 3 IDAs present. None of the ewes showed any of the 8 prominent IDAs except for the one at 21 kDa which was seen in 30 out of 32 ewes in both groups. N. caninum DNA was detected intermittently in the ram's semen up to 5 weeks post-inoculation with the concentrations ranging from that equivalent to 1-889 tachyzoites per ml of semen. Low concentrations of N. caninum DNA were also detected in the brain tissue of two rams (Groups 1 and 4). These results suggest that although N. caninum DNA can be found in the semen of experimentally infected rams, the transmission of N. caninum via natural mating is an unlikely event.
Titania and ceria incorporated rice husk silica based catalyst was synthesized via sol-gel method using CTAB and glycerol as surface directing agents at room temperature and labeled as RHS-50Ti10Ce. The catalyst was used to study the adsorption and photodegradation of methylene blue (MB) under UV irradiation. The powder XRD pattern of RHS-50Ti10Ce was much broader (2θ=25-30°) than that of the parent RHS (2θ=22°). The catalyst exhibited type IV isotherm with H3 hysteresis loop, and the TEM images showed partially ordered pore arrangements. The TGA-DTG thermograms confirmed the complete removal of the templates after calcination at 500°C. RHS-50Ti10Ce exhibited excellent adsorption capability with more than 99% removal of MB from a 40 mg L(-1) solution in just 15 min. It also decolorized an 80 mg L(-1) MB solution under UV irradiation in 210 min, which was comparable with the commercialized pure anatase TiO2.
A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique.
In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.
Vibrio cholerae is a human pathogen that causes mild to severe diarrheal illnesses and has major public health significance. Herein, we present a thermostabilized electrochemical genosensing assay combining the use of magnetic beads as a biorecognition platform and gold nanoparticles as a hybridization tag for the detection and quantification of V. cholerae lolB gene single-stranded asymmetric PCR amplicons as an alternative to the time-consuming classical isolation method. This thermostabilized, pre-mixed, pre-aliquoted and ready-to-use magnetogenosensing assay simplified the procedures and permitted the reaction to be conducted at room temperature. The asymmetric PCR amplicons were hybridized to a magnetic bead-functionalized capture probe and a fluorescein-labeled detection probe followed by tagging with gold nanoparticles. Electrochemical detection of the chemically dissolved gold nanoparticles was performed using the differential pulse anodic stripping voltammetry method. The real-time stability evaluation of thermostabilized assay was found to be stable for at least 180 days at room temperature (25-30°C). The analytical specificity of the assay was 100%, while its analytical sensitivity was linearly related to different concentrations of 200-mer synthetic target, purified genomic DNA, and bacterial culture with a limit of detection (LoD) of 3.9nM, 5pg/µl, and 10(3)CFU/ml, respectively. The clinical applicability of the assay was successfully validated using spiked stool samples with an average current signal-to-cut-off ratio of 10.8. Overall, the precision of the assay via relative standard deviation was <10%, demonstrating its reliability and accuracy.
Photocatalytic oxidation of crosslinked chitosan-epichlorohydrin (CS-ECH) film was successfully achieved via an immobilized TiO2/CS-ECH photocatalyst system on a glass plate. Oxidation process of CS-ECH film was carried out by irradiating the system with a 45-W fluorescent lamp for 10h in ultra-pure water. The results indicate the formation of carbonyl functional groups and partial elimination of amine groups in the molecular structure of the oxidized CS-ECH film. This oxidized CS-ECH film has different optical properties, ionic conductivity, degree of transparency, swelling index and chemical stability than the fresh CS-ECH film. In the environmental applications, the TiO2/oxidized-CS-ECH photocatalyst system can have photodegradation and faster mineralization rate of phenol than both fresh TiO2/CS-ECH and TiO2/oxidized-CS photocatalyst systems. This simple photocatalyst system, therefore can be considered as an environmental friendly method to oxidize synthetic biopolymer and to improve the photocatalytic efficiency of TiO2 to treat wastewater.