AIM OF THE STUDY: However, there are no scientific reports documented on the wound healing activities of this plant against Staphylococcus aureus infections in the Sprague Dawley male rat model. Thus, the present study was conducted to evaluate the wound healing potential of E. guineensis extract leaves.
MATERIALS AND METHODS: The crude extract was prepared in 10% (w/w) ointment and evaluated for wound healing activity using excision and infected wound models in Sprague Dawley rats. The wound healing activity was evaluated from wound closure rate, CFU reduction, histological analysis of granulation tissue and matrix metalloprotease expression.
RESULTS: The results show that the E. guineensis extract has potent wound healing ability, as manifest from improved wound closure and tissue regeneration supported by histopathological parameters. Assessment of granulation tissue every fourth day showed a significant reduction in the microbial count. The expression of matrix metalloproteinases was well correlated with the other results, hence confirming E. guineensis wound healing activity's effectiveness.
CONCLUSIONS: E. guineensis enhanced infected wound healing in rats, thus supporting its traditional use.
OBJECTIVE: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.
METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.
RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).
CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
.