Displaying publications 81 - 100 of 649 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Comput Softw Big Sci, 2020;4(1):10.
    PMID: 33196702 DOI: 10.1007/s41781-020-00041-z
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯ .
  2. Rajion Z, Suwardhi D, Setan H, Chong A, Majid Z, Ahmad A, et al.
    Conf Proc IEEE Eng Med Biol Soc, 2007 2 7;2005:5112-5.
    PMID: 17281397
    This study presents a data registration method for craniofacial spatial data of different modalities. The data consists of three dimensional (3D) vector and raster data models. The data is stored in object relational database. The data capture devices are Laser scanner, CT (Computed Tomography) scan and CR (Close Range) Photogrammetry. The objective of the registration is to transform the data from various coordinate systems into a single 3-D Cartesian coordinate system. The standard error of the registration obtained from multimodal imaging devices using 3D affine transformation is in the ranged of 1-2 mm. This study is a step forward for storing the spatial craniofacial data in one reference system in database.
  3. Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, et al.
    Crit Rev Anal Chem, 2020 Sep 20.
    PMID: 32954795 DOI: 10.1080/10408347.2020.1820851
    Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
  4. Ahmad M, Ahmad A, Omar TFT, Mohammad R
    Crit Rev Anal Chem, 2023 Apr 13.
    PMID: 37052389 DOI: 10.1080/10408347.2023.2199432
    Increasing acidity of seawater caused by increasing anthropogenic carbon dioxide absorbed into the seawater attracted the interest of researchers due to increased concern on the deterioration of marine systems and food supply to humans. Total alkalinity (TA) is one of the important parameters in determining carbonate chemistry and is described as the capacity of the sample to neutralize acids. Over the last two decades, many analytical techniques have been developed to determine TA. This article presents a review of different analytical techniques including titration, colorimetric, spectrophotometric, and potentiometric analyses in measuring TA. Among these analytical techniques, potentiometry analysis, which utilizes electrode systems such as glass electrode and ion-selective electrode used as indicator electrodes, is the most used technique. Important features such as principle, limitations, and challenges of the involved technique are discussed in detail.
  5. Ahmad A, Ghufran R
    Crit Rev Biotechnol, 2023 Dec;43(8):1236-1256.
    PMID: 36130802 DOI: 10.1080/07388551.2022.2103641
    This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
  6. Oon ZS, Kow RY, Ahmad Alwi AA, Ayeop MAS, Low CL, Che Ahmad A
    Cureus, 2023 Jul;15(7):e41844.
    PMID: 37575710 DOI: 10.7759/cureus.41844
    The heel and sole possess unique anatomical characteristics that serve a weight-bearing and shock-absorbing function. The heel is particularly vital, as any defects in this area can lead to gait instability. Reconstructing a heel defect presents challenges, as the donor flap must be durable enough to withstand high force loads while also providing protective sensation. Recently, the medial plantar artery flap has been successfully employed for the reconstruction of defective heel pads. This flap offers glabrous skin capable of weight transmission and intact protective sensation. In this report, we present two cases of heel pad loss secondary to chronic diabetic complications and trauma, respectively, which were treated with medial plantar artery flap reconstruction. Both cases were successfully treated, and they showed a good functional outcome.
  7. Ahmad A, Othman I, Md Zain AZ, Chowdhury EH
    Curr Drug Deliv, 2015;12(2):210-22.
    PMID: 22452407
    Diabetes mellitus is a chronic disease accompanied by a multitude of problems worldwide with subcutaneously administered insulin being the most common therapy currently. Controlledrelease insulin is assumed to be of high importance for long-term glycaemic control by reducing the number of daily injections. Long-acting insulin also mimics the basal insulin levels in normal individuals that may be lacking in diabetic patients. Nanoparticles of carbonate apatite as established for efficient intracellular transport of DNA and siRNA have the potential to be used for sustained release of insulin as responsive nano-carriers. The flexibility in the synthesis of the particles over a wide range of pHs with eventual adjustment of pH-dependent particle dissolution and the manageable variability of particle-integrity by incorporating selective ions into the apatite structure are the promising features that could help in the development of sustained release formulations for insulin. In particular strontium-incorporated carbonate apatite particles were formulated and compared with those of unsubstituted apatite in the context of insulin binding and subsequent release kinetics in DMEM, simulated buffer and finally human blood over a period of 20 hours. Clearly, the former demonstated to have a stronger electrostatic affinity towards the acidic insulin molecules and facilitate to some extent sustained release of insulin by preventing the initial burst effect at physiological pH in comparison with the latter. Thus, our findings suggest that optimization of the carbonate apatite particle composition and structure would serve to design an ideal insulin nano-carrier with a controlled release profile.
  8. Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, et al.
    Curr Drug Metab, 2020;21(6):436-465.
    PMID: 32562521 DOI: 10.2174/1389200221666200620204914
    Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
  9. Aziz ZAA, Ahmad A, Setapar SHM, Karakucuk A, Azim MM, Lokhat D, et al.
    Curr Drug Metab, 2018;19(13):1100-1110.
    PMID: 30039757 DOI: 10.2174/1389200219666180723144850
    BACKGROUND: Essential oils are liquid extracts from aromatic plants, which have numerous applications in multiple industries. There are a variety of methods used for the extraction of essential oils, with each method exhibiting certain advantages and determining the biological and physicochemical properties of the extracted oils. Essential oils from different plant species contain more than 200 constituents which are comprised of volatile and non-volatile components. The application of essential oils as antimicrobial, anticancer, anti-inflammatory and anti-viral agents is due to their effective and efficient properties, inter alia.

    METHOD: Several advanced (supercritical fluid extraction, subcritical extraction liquid, solvent-free microwave extraction) and conventional (hydrodistillation, steam distillation, hydrodiffusion, solvent extraction) methods have been discussed for the extraction of essential oils. Advanced methods are considered as the most promising extraction techniques due to less extraction time, low energy consumption, low solvent used and less carbon dioxide emission.

    CONCLUSION: This manuscript reviewed the major research studies in the field and discussed several research findings on the chemical composition of essential oils, methods of oil extraction, and application of these oils in pharmaceutical and therapeutic fields. These essential oils can be used as anticancer, antimicrobial, antiviral, and as skin permeation enhancer agents.

  10. Aziz ZABA, Ahmad A, Mohd-Setapar SH, Hassan H, Lokhat D, Kamal MA, et al.
    Curr Drug Metab, 2017;18(1):16-29.
    PMID: 27654898 DOI: 10.2174/1389200217666160921143616
    In clinical studies, drugs with hydrophobic characteristic usually reflect low bioavailability, poor drug absorption, and inability to achieve the therapeutic concentration in blood. The production of poor solubility drugs, in abundance, by pharmaceutical industries calls for an urgent need to find the alternatives for resolving the above mentioned shortcomings. Poor water solubility drugs loaded with polymeric micelle seem to be the best alternative to enhance drugs solubility and bioavailability. Polymeric micelle, formed by self-assembled of amphiphilic block copolymers in aqueous environment, functioned as solubilizing agent for hydrophobic drug. This review discusses the fundamentals of polymeric micelle as drug carrier through representative literature, and demonstrates some applications in various clinical trials. The structure, characteristic, and formation of polymeric micelle have been discussed firstly. Next, this manuscript focuses on the potential of polymeric micelles as drug vehicle in oral, transdermal routes, and anti-cancer agent. Several results from previous studies have been reproduced in this review in order to prove the efficacy of the micelles in delivering hydrophobic drugs. Lastly, future strategies to broaden the application of polymeric micelles in pharmaceutical industries have been highlighted.
  11. Albtoosh AS, Altarawneh T, Toubasi AA, Malek M, Albulbol DM, Alnugaimshi SF, et al.
    Curr Med Imaging, 2024;20:1-8.
    PMID: 38389348 DOI: 10.2174/0115734056255925231108052743
    BACKGROUND: Only a small number of the investigations that were carried out in the Middle East attempted to characterize patients with NCFB. In order to characterize patients with NCFB, as well as their etiologies, microbiological profiles, and outcomes, we therefore carried out this investigation.

    METHODS: This retrospective cohort study was carried out at the Jordan University Hospital (JUH), a tertiary facility located in Amman, Jordan. Non-cystic Fibrosis Bronchiectasis (NCFB) was defined as an HRCT scan typical for bronchiectasis along with a negative sweat chloride test to rule out cystic fibrosis. Patients' data were collected by the use of Electronic Medical Records (EMR) at our institution. Frequent exacerbation was defined as more than 2 exacerbations in 1 year of the onset of the diagnosis.

    RESULTS: A total of 79 patients were included, and 54.4% of them were female. The mean and standard deviation of the patient's age was 48.61 ± 19.62. The etiologies of bronchiectasis were evident in 79.7% of the sample. Asthma, Chronic Obstructive Pulmonary Diseases (COPD), and Kartagener syndrome were the most prevalent etiologies, accounting for related illnesses in 21.8%, 21.5%, and 13.9% of the patients, respectively. The most frequent bacteria cultured in our cohort were Pseudomonas and Candida Species. Moreover, 43 patients of the study cohort were frequent exacerbators, and 5 patients died.

    CONCLUSION: Our study supports the need to identify several bronchiectasis phenotypes linked to various causes. These findings provide information to clinicians for the early detection and treatment of bronchiectasis in Jordan.

  12. Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, et al.
    Curr Neuropharmacol, 2019;17(3):247-267.
    PMID: 30207234 DOI: 10.2174/1570159X16666180911124605
    Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer's disease, epilepsy, Parkinson's disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.
  13. Zahari W, Hashim SN, Yusof MF, Osman ZF, Kannan TP, Mokhtar KI, et al.
    Curr Stem Cell Res Ther, 2017;12(3):197-206.
    PMID: 27306400 DOI: 10.2174/1574888X11666160614103404
    Mesenchymal stem cells (MSCs) are stromal origin cells with multilineage differentiation capacity. The immunoregulatory properties of MSCs can be interfered effectively by cytokines. Cytokines, produced by a broad range of cells, act at the systemic level to influence biological phenomena such as inflammation, wound healing, organogenesis and oncogenesis. Cytokines also play vital roles in the differentiation of MSCs into several cell lineages. This review summarizes on how cytokines can affect MSCs differentiation and their relative signaling pathways, which may serve to understand the possible underlying mechanisms. Also, this review reveals the potential clinical use of MSCs as promising therapeutic agents due to their special characteristics such as multipotent differentiation, immunomodulatory properties, and selfrestoration.
  14. Mohd Nor NH, Berahim Z, Ahmad A, Kannan TP
    Curr Stem Cell Res Ther, 2017;12(1):52-60.
    PMID: 27538403
    Oral mucosa is a mucous membrane lining the oral cavity. Its main function is to protect the deeper structures against the external factors; thermal, chemical, mechanical and biological stimuli. Apart from that, it also plays a significant role during mastication, deglutition and speech. Some oral diseases or injuries to oral mucosa lead to impairment of the oral functions and aesthetics which eventually result in permanent defect of oral mucosa. In order to overcome this defect, different approaches for the development of reconstructed oral mucosa models have been employed including skin/autologous grafts, guided tissue replacement, vestibuloplasty etc. However, the finding of an acceptable source for the transplantations or autologous grafts seems a bit challenging. To overcome this problem, the development of oral mucosa using tissue engineering approach has been widely studied involving various cell lines from different sources. This paper aims to highlight various cell sources used in the development of tissueengineered oral mucosa models based on articles retrieved from PubMed and MEDLINE databases using the search terms "oral mucosa tissue engineering", regardless of time when published.
  15. Aziz NS, Yusop N, Ahmad A
    Curr Stem Cell Res Ther, 2020;15(3):284-299.
    PMID: 31985383 DOI: 10.2174/1574888X15666200127145923
    Stem cells play an essential role in maintaining homeostasis, as well as participating in new tissue regeneration. Over the past 20 years, a great deal of effort has been made to investigate the behaviour of stem cells to enable their potential use in regenerative medicine. However, a variety of biological characteristics are known to exist among the different types of stem cells due to variations in the methodological approach, formulation of cell culture medium, isolation protocol and cellular niches, as well as species variation. In recent years, cell-based therapy has emerged as one of the advanced techniques applied in both medical and clinical settings. Cell therapies aim to treat and repair the injury sites and replace the loss of tissues by stimulating the repair and regeneration process. In order to enable the use of stem cells in regenerative therapies, further characterisation of cell behaviour, in terms of their proliferation and differentiation capacity, mainly during the quiescent and inductive state is regarded as highly necessary. The central focus of regenerative medicine revolves around the use of human cells, including adult stem cells and induced pluripotent stem cells for cell-based therapy. The purpose of this review was to examine the existing body of literature on stem cell research conducted on cellular angiogenesis and migration, to investigate the validity of different strategies and variations of the cell type used. The information gathered within this review may then be shared with fellow researchers to assist in future research work, engaging in stem cell homing for cell-based therapy to enhance wound healing and tissue regeneration process.
  16. Shahimi S, Salam R, Salim JM, Ahmad A
    Data Brief, 2019 Aug;25:104045.
    PMID: 31194175 DOI: 10.1016/j.dib.2019.104045
    This data article is on riparian vegetation species richness in four different streams located in the Sultan Mahmud Hydroelectric dam, also known as Kenyir dam and commonly referred to as Tasik Kenyir, Terengganu. The dataset consists of three reservoir-island streams and the other is a small stream located on the mainland. A total of 41 families and 90 species of riparian plants were reported for the first time after 34 years of the establishment of the Sultan Mahmud Hydroelectric dam. Trees contributing 60% of the species recorded in this study and the others were non-tree species, including climbers, ferns, epiphyte, herbs, shrub, strangling trees and palms. Among the recorded riparian plant species, two are introduced which are Clidemia hirta and Mimosa pigra. The highest diversity of riparian plant found in the stream of Sungai Kiang, followed by Sungai Ikan and Sungai Saok with 46, 29 and 17 species respectively for the reservoir-island streams. The mainland stream, Sungai Siput recorded 37 species. These riparian plants provide important ecosystem services, among others soil stabilization, habitat and food for aquatic fauna and water filtration. In terms of plant utilization potential and values, 47 species are identified having medicinal value, 10 species with ornamental value and another 36 species are timber trees. Our study demonstrates that the riparian plants are closely linked to stream size with variability associated with types of stream systems. The data collected also demonstrates that the riparian plant community is at the seral stages of riparian forest. This is indicated by the increase in plant species richness as the vegetation gradually changes from riparian towards mature forest composition. To secure ecological functions of Tasik Kenyir riparian plant assemblages, particularly in stabilizing the lake's margin and riverbank, it is recommended that monitoring and legal protection may need to be imposed by local authority.
  17. Ismail CMKH, Khong NMH, Ahmad A, Mokhtar KI, Lestari W, Mustafa Alahmad BE, et al.
    Data Brief, 2023 Aug;49:109409.
    PMID: 37520655 DOI: 10.1016/j.dib.2023.109409
    Honey is a sustainable nutritious substance which has been incorporated into the human diet since ancient times for its health and remedial benefits. Stingless bee honey or kelulut honey (KH) is well-known in Malaysia and has received high demand in the market due to its distinctive unique flavour. Its composition, colour, and flavour are majorly affected by the geographical location, floral source, climate, as well as the bee species. This data article presents the nontargeted metabolite profiling of the extracts of KH of Heterotrigona itama and Tetrigona binghami bee species. The KH was collected from three nests in Kuantan, Pahang, which is situated in the east coast of Peninsular Malaysia. The extracts were prepared using sugaring-out assisted liquid-liquid extraction (SULLE) method and the Liquid Chromatography-Tandem Mass Spectrometry with Quadrupole Time-of-Flight, operated in the negative ion mode, was used to identify compounds in the extracts. The data processing revealed the presence of 35 known compounds in the KH1 extract by Heterotrigona itama collected from Bukit Kuin, 38 compounds in the KH2 extract by H. itama collected from Indera Mahkota, whilst 50 known compounds were present in KH3 extract by Tetrigona binghami species from Indera Mahkota. This data article contains the m/z values, retention times, and the METLIN database search hit identities of the compounds and their respective classes.
  18. Haque F, Reaz MBI, Chowdhury MEH, Shapiai MIB, Malik RA, Alhatou M, et al.
    Diagnostics (Basel), 2023 Jan 11;13(2).
    PMID: 36673074 DOI: 10.3390/diagnostics13020264
    Diabetic sensorimotor polyneuropathy (DSPN) is a serious long-term complication of diabetes, which may lead to foot ulceration and amputation. Among the screening tools for DSPN, the Michigan neuropathy screening instrument (MNSI) is frequently deployed, but it lacks a straightforward rating of severity. A DSPN severity grading system has been built and simulated for the MNSI, utilizing longitudinal data captured over 19 years from the Epidemiology of Diabetes Interventions and Complications (EDIC) trial. Machine learning algorithms were used to establish the MNSI factors and patient outcomes to characterise the features with the best ability to detect DSPN severity. A nomogram based on multivariable logistic regression was designed, developed and validated. The extra tree model was applied to identify the top seven ranked MNSI features that identified DSPN, namely vibration perception (R), 10-gm filament, previous diabetic neuropathy, vibration perception (L), presence of callus, deformities and fissure. The nomogram's area under the curve (AUC) was 0.9421 and 0.946 for the internal and external datasets, respectively. The probability of DSPN was predicted from the nomogram and a DSPN severity grading system for MNSI was created using the probability score. An independent dataset was used to validate the model's performance. The patients were divided into four different severity levels, i.e., absent, mild, moderate, and severe, with cut-off values of 10.50, 12.70 and 15.00 for a DSPN probability of less than 50, 75 and 100%, respectively. We provide an easy-to-use, straightforward and reproducible approach to determine prognosis in patients with DSPN.
  19. Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, et al.
    Diagnostics (Basel), 2023 Oct 18;13(20).
    PMID: 37892067 DOI: 10.3390/diagnostics13203246
    Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links