Displaying publications 81 - 100 of 275 in total

Abstract:
Sort:
  1. Alias Y, Awang K, Hadi AH, Thoison O, Sévenet T, Païs M
    J Nat Prod, 1995 Aug;58(8):1160-6.
    PMID: 7595585
    Bioassay-guided fractionation of an ethyl acetate extract of Fissistigma lanuginosum led to the isolation of the known chalcone pedicin [1], which inhibited tubulin assembly into microtubules (IC50 value of 300 microM). From the same EtOAc fraction, two new condensed chalcones, fissistin [2] and isofissistin [3], which showed cytotoxicity against KB cells, were also obtained, together with the inactive dihydropedicin [4] and 6,7-dimethoxy-5,8-dihydroxyflavone [5]. In addition, the aminoquinones 6, 8, and 9 were isolated from the alkaloid extract. These compounds were artifacts, prepared by treatment of 1, 4, and 2, respectively, with NH4OH. The structures of the new compounds were elucidated by spectral methods, especially 2D nmr.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  2. Lichius JJ, Thoison O, Montagnac A, Païs M, Guéritte-Voegelein F, Sévenet T, et al.
    J Nat Prod, 1994 Jul;57(7):1012-6.
    PMID: 7964782
    Bioassay-guided fractionation of the extracts of Zieridium pseudobtusifolium and Acronychia porteri led to the isolation of 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone [1], which showed activity against (KB) human nasopharyngeal carcinoma cells (IC50 0.04 micrograms/ml) and inhibited tubulin assembly into microtubules (IC50 12 microM). Two other known flavonols, digicitrin [2] and 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone [5], were also isolated together with three new ones, 3-O-demethyldigicitrin [3], 3,5,3'-trihydroxy-6,7,8,4'-tetramethoxyflavone [4], and 3,5-dihydroxy-6,7,8,3',4'-pentamethoxyflavone [6]. All of these flavonols showed cytotoxic activity against KB cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  3. Siew YY, Yew HC, Neo SY, Seow SV, Lew SM, Lim SW, et al.
    J Ethnopharmacol, 2019 May 10;235:75-87.
    PMID: 30599223 DOI: 10.1016/j.jep.2018.12.040
    ETHNOPHARMACOLOGICAL RELEVANCE: The extensive biodiversity of plants in Southeast Asia and inadequate research hitherto warrant a continued investigation into medicinal plants. On the basis of a careful review of fresh medicinal plant usage to treat cancer from previous ethnobotanical interviews in Singapore and from the traditional uses of the indigenous plants, fresh leaves of seven locally grown medicinal plant species were evaluated for anti-proliferative activity.

    AIM OF THE STUDY: To evaluate the anti-proliferative activity of local medicinal plant species Clausena lansium Skeels, Clinacanthus nutans (Burm. f.) Lindau, Leea indica (Burm. f.) Merr., Pereskia bleo (Kunth) DC., Strobilanthes crispus (L.) Blume, Vernonia amygdalina Delile and Vitex trifolia L.

    MATERIALS AND METHOD: Fresh, healthy and mature leaves of the seven medicinal plants were harvested from various locations in Singapore and Malaysia for Soxhlet, ultrasonication and maceration extractions in three different solvents (water, ethanol and methanol). Cell proliferation assay using water soluble tetrazolium salt (WST-1) assay was performed on twelve human cancer cell lines derived from breast (MDA-MB-231, T47D), cervical (C33A), colon (HCT116), leukemia (U937), liver (HepG2, SNU-182, SNU-449), ovarian (OVCAR-5, PA-1, SK-OV-3) and uterine (MES-SA/DX5) cancer.

    RESULTS: A total of 37 fresh leaf extracts from seven medicinal plants were evaluated for their anti-tumour activities in twelve human cancer cell lines. Of these, the extracts of C. lansium, L. indica, P. bleo, S. crispus, V. amygdalina and V. trifolia exhibited promising anti-proliferative activity against multiple cancer cell lines. Further investigation of selected promising leaf extracts indicated that maceration methanolic extract of L. indica was most effective overall against majority of the cancer cell lines, with best IC50 values of 31.5 ± 11.4 µg/mL, 37.5 ± 0.7 µg/mL and 43.0 ± 6.2 µg/mL in cervical C33A, liver SNU-449, and ovarian PA-1 cancer cell lines, respectively.

    CONCLUSION: The results of this study provide new scientific evidence for the traditional use of local medicinal plant species C. lansium, L . indica, P. bleo, S. crispus, V. amygdalina and V. trifolia in cancer treatment. These results highlight the importance of the upkeep of these indigenous plants in modern society and their relevance as resources for drug discovery.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  4. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    BMC Complement Altern Med, 2019 Aug 19;19(1):220.
    PMID: 31426778 DOI: 10.1186/s12906-019-2628-z
    BACKGROUND: Baeckea frutescens (B. frutescens) of the family Myrtaceae is a plant that has been used in traditional medicine. It is known to have antibacterial, antipyretic and cytoprotective properties. The objective of this study is to explore the mechanism of B. frutescens leaves extracts in eliminating breast cancer cells.

    METHOD: B. frutescens leaves extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxicity of these extracts at various concentrations (20 to 160 μg/ml) were tested using cell viability assay after 24, 48 and 72 h of treatment. The IC50 value in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscope. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening was performed for alkaloids, flavonoids, tannins, triterpenoids, and phenols.

    RESULTS: B. frutescens leaves extracts showed IC50 value ranging from 10 -127μg/ml in MCF-7 cells after 72 h of treatment. Hexane extract had the lowest IC50 value (10μg/ml), indicating its potent selective cytotoxic activity. Morphology of MCF-7 cells after treatment with B. frutescens extracts exhibited evidence of apoptosis that included membrane blebbing and chromatin condensation. In the glucose uptake assay, B. frutescens extracts suppressed glucose uptake in cancer cells as early as 24 h upon treatment. The inhibition was significantly lower compared to the positive control WZB117 at their respective IC50 value after 72 h incubation. It was also shown that the glucose inhibition is selective towards cancer cells compared to normal cells. The phytochemical analysis of the extract using hexane as the solvent in particular gave similar quantities of tannin, triterpenoids, flavonoid and phenols. Presumably, these metabolites have a synergistic effect in the in vitro testing, producing the potent IC50 value and subsequently cell death.

    CONCLUSION: This study reports the potent selective cytotoxic effect of B. frutescens leaves hexane extract against MCF-7 cancer cells. B. frutescens extracts selectively suppressed cancer cells glucose uptake and subsequently induced cancer cell death. These findings suggest a new role of B. frutescens in cancer cell metabolism.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  5. Sul ‘ain MD, Zakaria F, Johan MF
    Asian Pac J Cancer Prev, 2019 Jan 25;20(1):185-192.
    PMID: 30678430
    Background: Cervical cancer is one of the most commonly diagnosed neoplasms and a leading cause of cancer
    death among females worldwide. Limitations with conventional medical treatments have driven researchers to
    search for alternative approaches using natural products. This study aimed to detemine potential anti-proliferative
    effects of methanol and water extracts of Pyrrosia piloselloides (P. piloselloides) on the HeLa cell line. Methods:
    3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to determine IC50
    concentrations and apoptosis analysis was by flow cytometry. To identify chemical compounds in the extracts, gas
    chromatography-mass spectrometry (GC-MS) was employed. Results: P. piloselloides methanol extracts (PPME) showed
    antiproliferative effects on HeL awith an IC50 of 16.25μg/mL while the P. piloselloides water extract (PPWE) was without
    influence. Neither extract showed any significant effects on apoptosis. GC-MS analysis, revealed 5-hydroxymethylfurfural
    (23.1%), allopurinol (8.66%) and 3, 5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (7.41%) as major components in
    the PPME, while sulfolan-3-ol (10.1%), linoleic acid (9.06%) and β-sitosterol acetate (7.98%) predominated in the
    PPWE case. Conclusion: This first study of P. piloselloides showed PPME to exert potent anti-proliferative effect on
    HeLa cell lines. Further research now needs to be performed to establish the mechanisms of inhibition.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  6. Saleem H, Htar TT, Naidu R, Nawawi NS, Ahmad I, Ashraf M, et al.
    Food Chem Toxicol, 2019 Jan;123:363-373.
    PMID: 30419323 DOI: 10.1016/j.fct.2018.11.016
    We investigated into the effects of methanol and dichloromethane extracts from aerial and roots of Filago germanica (L.) Huds (Astearaceae) on key enzymes (cholinesterases, α-glucosidase and urease), antioxidant capabilities, cytotoxic potential and secondary metabolomics profile. Total phenolic and flavonoids were determined by spectrophotometric technique and secondary metabolites composition by UHPLC-MS. Antioxidant activities were assessed employing free radical scavenging, ferric reducing power and phosphomolybdenum assays. The cell-toxicity was evaluated by MTT assay against breast (MCF-7, MDA-MB-231), cervix (CaSki) and prostate (DU-145) cancers. Overall, methanol extracts were found to have higher total bioactive contents and antioxidant potential. UHPLC-MS analysis revealed significant variation in the secondary metabolites in the methanol extracts. The most common derivatives belong to seven groups i.e. alkaloids, benzoic acids, flavones, flavonols, flavan-3-ols, terpenoids and saponins. The major polyphenolic compounds were found to be kampferol, robinin, luteolin, ferulic acid, benzoic acid and salicylic acid. All the extracts showed moderate cholinesterases inhibition, whereas methanol extracts exhibited highest urease inhibition and all extracts presented a relatively high inhibition against α-glucosidase. Similarly, all extracts showed strong to moderate cytotoxicity with IC50 values ranging from 53.02 to 382.7 μg/mL. Overall, results have suggested F. germanica to be a lead source for novel natural products.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  7. Huang TT, Lan YW, Chen CM, Ko YF, Ojcius DM, Martel J, et al.
    Sci Rep, 2019 03 26;9(1):5145.
    PMID: 30914735 DOI: 10.1038/s41598-019-41653-9
    We examined the effects of an Antrodia cinnamomea ethanol extract (ACEE) on lung cancer cells in vitro and tumor growth in vivo. ACEE produced dose-dependent cytotoxic effects and induced apoptosis in Lewis lung carcinoma (LLC) cells. ACEE treatment increased expression of p53 and Bax, as well as cleavage of caspase-3 and PARP, while reducing expression of survivin and Bcl-2. ACEE also reduced the levels of JAK2 and phosphorylated STAT3 in LLC cells. In a murine allograft tumor model, oral administration of ACEE significantly inhibited LLC tumor growth and metastasis without affecting serum biological parameters or body weight. ACEE increased cleavage of caspase-3 in murine tumors, while decreasing STAT3 phosphorylation. In addition, ACEE reduced the growth of human tumor xenografts in nude mice. Our findings therefore indicate that ACEE inhibits lung tumor growth and metastasis by inducing apoptosis and by inhibiting the STAT3 signaling pathway in cancer cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  8. Xin J, Wan Mahtar WNA, Siah PC, Miswan N, Khoo BY
    Mol Med Rep, 2019 Jun;19(6):5368-5376.
    PMID: 31059050 DOI: 10.3892/mmr.2019.10201
    Cancer chemotherapy possesses high toxicity, particularly when a higher concentration of drugs is administered to patients. Therefore, searching for more effective compounds to reduce the toxicity of treatments, while still producing similar effects as current chemotherapy regimens, is required. Currently, the search for potential anticancer agents involves a random, inaccurate process with strategic deficits and a lack of specific targets. For this reason, the initial in vitro high‑throughput steps in the screening process should be reviewed for rapid identification of the compounds that may serve as anticancer agents. The present study aimed to investigate the potential use of the Pichia pastoris strain SMD1168H expressing DNA topoisomerase I (SMD1168H‑TOPOI) in a yeast‑based assay for screening potential anticancer agents. The cell density that indicated the growth of the recombinant yeast without treatment was first measured by spectrophotometry. Subsequently, the effects of glutamate (agonist) and camptothecin (antagonist) on the recombinant yeast cell density were investigated using the same approach, and finally, the effect of camptothecin on various cell lines was determined and compared with its effect on recombinant yeast. The current study demonstrated that growth was enhanced in SMD1168H‑TOPOI as compared with that in SMD1168H. Glutamate also enhanced the growth of the SMD1168H; however, the growth effect was not enhanced in SMD1168H‑TOPOI treated with glutamate. By contrast, camptothecin caused only lower cell density and growth throughout the treatment of SMD1168H‑TOPOI. The findings of the current study indicated that SMD1168H‑TOPOI has similar characteristics to MDA‑MB‑231 cells; therefore, it can be used in a yeast‑based assay to screen for more effective compounds that may inhibit the growth of highly metastatic breast cancer cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  9. Taha H, Hadi AH, Nordin N, Najmuldeen IA, Mohamad K, Shirota O, et al.
    Chem Pharm Bull (Tokyo), 2011;59(7):896-7.
    PMID: 21720044
    Pseuduvarines A (1) and B (2), two new dioxoaporphine alkaloids with an amino moiety, were isolated from the stem bark of Pseuduvaria rugosa and their structures were elucidated by combination of 2D-NMR spectroscopic analysis. Pseuduvarines A (1) and B (2) showed cytotoxicity against MCF7, HepG2, and HL-60 (1: IC₅₀, 0.9, 21.7, and >50.0 µM, respectively, 2: IC₅₀ >50.0, 15.7, and 12.4 µM, respectively).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  10. Sim YY, Nyam KL
    Food Chem, 2021 May 15;344:128582.
    PMID: 33199120 DOI: 10.1016/j.foodchem.2020.128582
    The electronic database was searched up to July 2020, using keywords, kenaf and roselle, chemical constituents of kenaf and roselle, therapeutic uses of kenaf and roselle. Journals, books and conference proceedings were also searched. Investigations of pharmacological activities of kenaf revealed that this edible plant exhibits a broad range of therapeutic potential including antioxidant, antimicrobial, antityrosinase, anticancer, antihyperlipidemia, antiulcer, anti-inflammatory, and hepatoprotective activities. Kenaf also showed versatile utility as a functional ingredient in food, folk medicine, and animal nutritions, as well as in nanotechnology processes. The exploitation of underexploited kenaf by-products can be a significant part of waste management from an economic and environmental point of view. In addition, kenaf showed comparable nutritional, phytochemical, and pharmacological properties with Hibiscus sabdariffa (Roselle). This review has important implications for further investigations and applications of kenaf in food and pharmaceuticals industry.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  11. Lee JJ, Saiful Yazan L, Kassim NK, Che Abdullah CA, Esa N, Lim PC, et al.
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512700 DOI: 10.3390/molecules25112610
    Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and β-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  12. Lu MC, Li TY, Hsieh YC, Hsieh PC, Chu YL
    Environ Toxicol, 2018 Dec;33(12):1229-1236.
    PMID: 30188005 DOI: 10.1002/tox.22629
    Clinacanthus nutans has been used as herbal medicine with antidiabetic, blood pressure lowering, and diuretic properties in Singapore, Thailand, and Malaysia. The in vitro cellular study showed the chloroform extract possessed significant cytotoxicity against leukemia K562 and lymphoma Raji cells. The clinical study reported that administration of plant could treat or prevent relapse in 12 cancer patients. However, detailed mechanism of the anticancer effects and chemical profiles are not thoroughly studied. The chemical study did show that the acetone extract (MHA) exerted the highest antiproliferative effect on human leukemia MOLT-4 cells and lymphoma SUP-T1 cells in dose-dependent cytotoxicity. We found that the use of MHA increased apoptosis by 4.28%-43.65% and caused disruption of mitochondrial membrane potential (MMP) by 11.79%-26.93%, increased reactive oxygen species (ROS) by 19.54% and increased calcium ion by 233.83%, as demonstrated by annexin-V/PI, JC-1, H2 DCFDA, and Flou-3 staining assays, respectively. MHA-induced ER stress was confirmed by increase expression of CHOP and IRE-1α with western blotting assay. In conclusion, we identified good bioactivity in Clinacanthus nutans and recognize its potential effect on cancer therapy, but further research is needed to determine the use of the plant.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  13. Daddiouaissa D, Amid A, Abdullah Sani MS, Elnour AAM
    J Ethnopharmacol, 2021 Apr 24;270:113813.
    PMID: 33444719 DOI: 10.1016/j.jep.2021.113813
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used by indigenous people across the world for centuries to help individuals preserve their wellbeing and cure diseases. Annona muricata L. (Graviola) which is belonging to the Annonaceae family has been traditionally used due to its medicinal abilities including antimicrobial, anti-inflammatory, antioxidant and cancer cell growth inhibition. Graviola is claimed to be a potential antitumor due to its selective cytotoxicity against several cancer cell lines. However, the metabolic mechanism information underlying the anticancer activity remains limited.

    AIM OF THE STUDY: This study aimed to investigate the effect of ionic liquid-Graviola fruit pulp extract (IL-GPE) on the metabolomics behavior of colon cancer (HT29) by using an untargeted GC-TOFMS-based metabolic profiling.

    MATERIALS AND METHODS: Multivariate data analysis was used to determine the metabolic profiling, and the ingenuity pathway analysis (IPA) was used to predict the altered canonical pathways after treating the HT29 cells with crude IL-GPE and Taxol (positive control).

    RESULTS: The principal components analysis (PCA) identified 44 metabolites with the most reliable factor loading, and the cluster analysis (CA) separated three groups of metabolites: metabolites specific to the non-treated HT29 cells, metabolites specific to the treated HT29 cells with the crude IL-GPE and metabolites specific to Taxol treatment. Pathway analysis of metabolomic profiles revealed an alteration of many metabolic pathways, including amino acid metabolism, aerobic glycolysis, urea cycle and ketone bodies metabolism that contribute to energy metabolism and cancer cell proliferation.

    CONCLUSION: The crude IL-GPE can be one of the promising anticancer agents due to its selective inhibition of energy metabolism and cancer cell proliferation.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  14. Yong DOC, Saker SR, Chellappan DK, Madheswaran T, Panneerselvam J, Choudhury H, et al.
    PMID: 32359343 DOI: 10.2174/1871530320666200503053846
    The application of medicinal plants has captured the interest of researchers in recent times due to their potent therapeutic properties and a better safety profile. The prominent role of herbal products in treating and preventing multiple diseases dates back to ancient history and most of the modern drugs today originated from their significant sources owing to their ability to control multiple targets via different signalling pathways. Among them, flavonoids consist of a large group of polyphenols, which are well known for their various therapeutic benefits. Rutin is considered one of the attractive phytochemicals and important flavonoids in the pharmaceutical industry due to its diverse pharmacological activities via various underlying molecular mechanisms. It is usually prescribed for various disease conditions such as varicosities, haemorrhoids and internal haemorrhage. In this review, we have discussed and highlighted the different molecular mechanisms attributed to the various pharmacological activities of rutin, such as antioxidant, anti-inflammatory, anticancer, anti-allergic and antidiabetic. This review will be beneficial to herbal, biological and molecular scientists in understanding the pharmacological relevance of rutin at the molecular level.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  15. Syed Najmuddin SU, Romli MF, Hamid M, Alitheen NB, Nik Abd Rahman NM
    BMC Complement Altern Med, 2016 Aug 24;16(1):311.
    PMID: 27558166 DOI: 10.1186/s12906-016-1290-y
    Annona muricata Linn which comes from Annonaceae family possesses many therapeutic benefits as reported in previous studies and to no surprise, it has been used in many cultures to treat various ailments including headaches, insomnia, and rheumatism to even treating cancer. However, Annona muricata Linn obtained from different cultivation area does not necessarily offer the same therapeutic effects towards breast cancer (in regards to its bioactive compound production). In this study, anti-proliferative and anti-cancer effects of Annona muricata crude extract (AMCE) on breast cancer cell lines were evaluated.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  16. Adebayo IA, Arsad H, Samian MR
    PMID: 28573245 DOI: 10.21010/ajtcam.v14i2.30
    BACKGROUND: Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed.
    MATERIALS AND METHODS: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A.
    RESULTS: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml).
    CONCLUSION: Moringa oleifera seed has antiproliferative effect on MCF7.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  17. Shipton FN, Khoo TJ, Hossan MS, Wiart C
    J Ethnopharmacol, 2017 Feb 23;198:91-97.
    PMID: 28049063 DOI: 10.1016/j.jep.2016.12.045
    ETHNOPHARMACOLOGICAL RELEVANCE: Pericampylus glaucus is a climbing plant found across Asia and used in traditional medicine to treat a number of conditions including splenomegaly, fever, cough, laryngitis, pulmonary disease, asthma, headache, hair loss, snake bite, boar bite, factures, boils, tumours, tetanus, rheumatic pain, itches and eclampsia.

    AIM OF THE STUDY: To test extracts of P. glaucus in a number of bioassays and determine the legitimacy of its traditional use.

    MATERIALS AND METHODS: The stems, leaves, roots and fruits of P. glaucus were collected and extracted sequentially with hexane, chloroform and ethanol, respectively. The anti-inflammatory activity was assessed by testing the ability of the extracts to inhibit heat induced protein denaturation, stabilise human red blood cells under hypotonic stress and by testing the inhibitory activity of the extracts against cyclooxygenases 1 and 2. Cytotoxicity was tested using the human lung epithelial cell line MRC-5 and nasopharangeal carcinoma cell line HK1 in the MTT assay.

    RESULTS: Many of the samples showed an ability to prevent heat induced protein denaturation, as well as prevent lysis of red blood cells. Most of the extracts demonstrated inhibitory activity towards both of the COX enzymes. The ethanol extracts tended to demonstrate greater toxicity than other extracts, with some of the other extracts significantly enhancing growth and metabolism of the cells.

    CONCLUSION: The benefit of P. glaucus for the treatment of diseases related to inflammation and cancer was supported by the in vitro assays adopted in this study.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  18. Vijayan V, Shalini K, Yugesvaran V, Yee TH, Balakrishnan S, Palanimuthu VR
    Curr Pharm Des, 2018;24(28):3366-3375.
    PMID: 30179118 DOI: 10.2174/1381612824666180903110301
    BACKGROUND: Triple-Negative Breast Cancer is an aggressive type of breast cancer, which is not treatable by chemotherapy drugs, due to the lack of Estrogen Receptor (ER), Progesterone Receptor (PR) expression and Human Epidermal Growth Factor Receptor 2 (HER2) on the cell surface.

    OBJECTIVE: The aim of this study was to compare the effect of paclitaxel loaded PLGA nanoparticle (PTX-NPs) on the cytotoxicity and apoptosis of the different MDA-MB type of cell lines.

    METHOD: PTX-NPs were prepared by nanoprecipitation method and characterized earlier. The cytotoxicity of PTX-NPs was evaluated by MTT and LDH assay, later apoptosis was calculated by flow cytometry analysis.

    RESULTS: The prepared NP size of 317.5 nm and zetapontial of -12.7 mV showed drug release of 89.1 % at 48 h. MDA-MB-231 type cell showed significant cytotoxicity by MTT method of 47.4 ± 1.2 % at 24 h, 34.6 ± 0.8 % at 48 h and 23.5 ± 0.5 % at 72 h and LDH method of 35.9 ± 1.5 % at 24 h, 25.4 ± 0.6 % at 48 h and 19.8 ± 2.2 % at 72 h with apoptosis of 47.3 ± 0.4 %.

    CONCLUSION: We have found that PTX-NPs showed the cytotoxic effect on all the MDA-MB cancer cell lines and showed potent anticancer activities against MDA-MB-231 cell line via induction of apoptosis.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  19. Yeap JS, Saad HM, Tan CH, Sim KS, Lim SH, Low YY, et al.
    J Nat Prod, 2019 11 22;82(11):3121-3132.
    PMID: 31642315 DOI: 10.1021/acs.jnatprod.9b00712
    A methanol extract of the stem bark of the Malayan Alstonia penangiana provided seven new bisindole alkaloids, comprising six macroline-sarpagine alkaloids (angustilongines E-K, 1-6) and one macroline-pleiocarpamine bisindole alkaloid (angustilongine L, 7). Analysis of the spectroscopic data (NMR and MS) of these compounds led to the proposed structures of these alkaloids. The macroline-sarpagine alkaloids (1-6) showed in vitro growth inhibitory activity against a panel of human cancer cell lines, inclusive of KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, HCT 116, and A549 cells (IC50 values: 0.02-9.0 μM).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  20. Suhaimi SH, Hasham R, Hafiz Idris MK, Ismail HF, Mohd Ariffin NH, Abdul Majid FA
    Molecules, 2019 Nov 18;24(22).
    PMID: 31752230 DOI: 10.3390/molecules24224183
    Primarily, optimization of ultrasonic-assisted extraction (UAE) conditions of Orthospihon stamineus was evaluated and verified using a central composite design (CCD) based on three factors including extraction time (minutes), ultrasound amplitude (A), and solvent concentration (%). The response surface methodology (RSM) was performed to develop an extraction method with maximum yield and high rosmarinic acid content. The optimal UAE conditions were as follows: extraction time 21 min, ultrasound amplitudes 62 A, and solvent composition 70% ethanol in water. The crude extract was further fractionated using solid-phase extraction (SPE), where six sequential fractions that varied in polarity (0-100% Acetonitrile in water) were obtained. Next, the six fractions were evaluated for their antioxidant and anti-cancer properties. This study found that Fraction 2 (F2) contained the highest rosmarinic acid content and showed the strongest antioxidant activity. Additionally, F2 showed an anti-proliferative effect against prostate cancer (DU145) with no harmful effect on normal cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links