Displaying publications 81 - 100 of 636 in total

Abstract:
Sort:
  1. Talari MK, Abdul Majeed AB, Tripathi DK, Tripathy M
    Chem Pharm Bull (Tokyo), 2012;60(7):818-24.
    PMID: 22790812
    The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  2. Tajdidzadeh M, Azmi BZ, Yunus WM, Talib ZA, Sadrolhosseini AR, Karimzadeh K, et al.
    ScientificWorldJournal, 2014;2014:324921.
    PMID: 25295298 DOI: 10.1155/2014/324921
    The particle size, morphology, and stability of Ag-NPs were investigated in the present study. A Q-Switched Nd: YAG pulsed laser (λ = 532 nm, 360 mJ/pulse) was used for ablation of a pure Ag plate for 30 min to prepare Ag-NPs in the organic compound such as ethylene glycol (EG) and biopolymer such as chitosan. The media (EG, chitosan) permitted the making of NPs with well dispersed and average size of Ag-NPs in EG is about 22 nm and in chitosan is about 10 nm in spherical form. Particle size, morphology, and stability of NPs were compared with distilled water as a reference. The stability of the samples was studied by measuring UV-visible absorption spectra of samples after one month. The result indicated that the formation efficiency of NPs in chitosan was higher than other media and NPs in chitosan solution were more stable than other media during one month storage. This method for synthesis of silver NPs could be as a green method due to its environmentally friendly nature.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  3. Taguchi K, Chuang VTG, Hashimoto M, Nakayama M, Sakuragi M, Enoki Y, et al.
    Chem Pharm Bull (Tokyo), 2020;68(8):766-772.
    PMID: 32741918 DOI: 10.1248/cpb.c20-00222
    Lactoferrin (Lf) nanoparticles have been developed as a carrier of drugs and gene. Two main methods, desolvation technique and emulsification method, for preparation of protein nanoparticles have been reported so far, but most of the previous reports of Lf nanoparticles preparation are limited to emulsification method. In this study, we investigated the optimal conditions by desolvation technique for the preparation of glutaraldehyde-crosslinked bovine Lf (bLf) nanoparticles within the size range of 100-200 nm, and evaluated their properties as a carrier for oral and intravenous drug delivery. The experimental results of dynamic light scattering and Transmission Electron Microscope suggested that glutaraldehyde-crosslinked bLf nanoparticles with 150 nm in size could be produced by addition of 2-propanol as the desolvating solvent into the bLf solution adjusted to pH 6, followed by crosslinking with glutaraldehyde. These cross-linked bLf nanoparticles were found to be compatible to blood components and resistant against rapid degradation by pepsin. Thus, cross-linked bLf nanoparticles prepared by desolvation technique can be applied as a drug carrier for intravenous administration and oral delivery.
    Matched MeSH terms: Nanoparticles/chemistry*
  4. Taghizadeh SM, Berenjian A, Chew KW, Show PL, Mohd Zaid HF, Ramezani H, et al.
    Bioengineered, 2020 12;11(1):141-153.
    PMID: 31994978 DOI: 10.1080/21655979.2020.1718477
    Cell immobilization on the magnetic nanoparticles (MNPs) and magnetic harvesting is a novel approach for microalgal cells separation. To date, the effect of these nanoparticles on microalgal cells was only studied over a short period of time. More studies are hence needed for a better understanding of the magnetic harvesting proposes or environmental concerns relating to long-term exposure to nanoparticles. In this study, the impact of various concentrations of MNPs on the microalgal cells growth and their metabolic status was investigated over 12 days. More than 60% reduction in mitochondrial activity and pigments (chlorophyll a, chlorophyll b, and carotenoids) content occurred during the first 6 days of exposure to ≥50 µg/mL nanoparticles. However, more than 50% growth inhibitory effect was seen at concentrations higher than 400 µg/mL. Exposure to MNPs gradually induced cellular adaptation and after about 6 days of exposure to stress generating concentrations (˂400 µg/mL) of IONs, microalgae could overcome the imposed damages. This work provides a better understanding regarding the environmental impact of MNPs and appropriate concentrations of these particles for future algal cells magnetic immobilization and harvesting.
    Matched MeSH terms: Nanoparticles/chemistry*
  5. Syed Azhar SNA, Ashari SE, Salim N
    Int J Nanomedicine, 2018;13:6465-6479.
    PMID: 30410332 DOI: 10.2147/IJN.S171532
    Introduction: Kojic monooleate (KMO) is an ester derived from a fungal metabolite of kojic acid with monounsaturated fatty acid, oleic acid, which contains tyrosinase inhibitor to treat skin disorders such as hyperpigmentation. In this study, KMO was formulated in an oil-in-water nanoemulsion as a carrier for better penetration into the skin.

    Methods: The nanoemulsion was prepared by using high and low energy emulsification technique. D-optimal mixture experimental design was generated as a tool for optimizing the composition of nanoemulsions suitable for topical delivery systems. Effects of formulation variables including KMO (2.0%-10.0% w/w), mixture of castor oil (CO):lemon essential oil (LO; 9:1) (1.0%-5.0% w/w), Tween 80 (1.0%-4.0% w/w), xanthan gum (0.5%-1.5% w/w), and deionized water (78.8%-94.8% w/w), on droplet size as a response were determined.

    Results: Analysis of variance showed that the fitness of the quadratic polynomial fits the experimental data with F-value (2,479.87), a low P-value (P<0.0001), and a nonsignificant lack of fit. The optimized formulation of KMO-enriched nanoemulsion with desirable criteria was KMO (10.0% w/w), Tween 80 (3.19% w/w), CO:LO (3.74% w/w), xanthan gum (0.70% w/w), and deionized water (81.68% w/w). This optimum formulation showed good agreement between the actual droplet size (110.01 nm) and the predicted droplet size (111.73 nm) with a residual standard error <2.0%. The optimized formulation with pH values (6.28) showed high conductivity (1,492.00 µScm-1) and remained stable under accelerated stability study during storage at 4°C, 25°C, and 45°C for 90 days, centrifugal force as well as freeze-thaw cycles. Rheology measurement justified that the optimized formulation was more elastic (shear thinning and pseudo-plastic properties) rather than demonstrating viscous characteristics. In vitro cytotoxicity of the optimized KMO formulation and KMO oil showed that IC50 (50% inhibition of cell viability) value was >100 µg/mL.

    Conclusion: The survival rate of 3T3 cell on KMO formulation (54.76%) was found to be higher compared to KMO oil (53.37%) without any toxicity sign. This proved that the KMO formulation was less toxic and can be applied for cosmeceutical applications.

    Matched MeSH terms: Nanoparticles/chemistry
  6. Syamila N, Syahir A, Ikeno S, Tan WS, Ahmad H, Ahmad Tajudin A
    Colloids Surf B Biointerfaces, 2020 Jan 01;185:110623.
    PMID: 31735420 DOI: 10.1016/j.colsurfb.2019.110623
    Bio-nanogate involves synthesized or natural molecules as a 'gate' towards bioreceptors and responds upon the presence of targeted analytes in nanoscale dimension. Development of bio-nanogate improves analyte selectivity and signal response across various types of biosensors. The versatility of PAMAM dendrimers to form conjugates with guest molecules, such as proteins can be utilized in forming a bio-nanogate. PAMAM interaction with peptide bioreceptor for antibody detection is of interest in this study. This study investigated the interaction of synthesized immunogenic 'a' determinant (aD) region of hepatitis B virus surface antigen (HBsAg) with PAMAM G4 and anti-HBsAg antibody, as a potential bio-nanogate for anti-HBsAg detection. The aD peptide fused with maltose binding protein (MBP), was confirmed with Western blotting. Nano-Differential Scanning Fluorimetry (nano-DSF) study revealed that the interaction of MBP-aD with anti-HBsAg indicated a higher thermal stability as compared to its interaction with PAMAM G4. Electrochemical impedance spectroscopy showed that a higher binding constant of MBP-aD interaction with anti-HBsAg (0.92 μM-1) was observed at maximum saturation, as compared with PAMAM G4 (0.07 μM-1). Thermodynamic parameters demonstrated that MBP-aD interacted with anti-HBsAg and PAMAM G4, through van der Waals and hydrogen bonding. These analyses suggest that the weak interaction of MBP-aD and PAMAM G4 may form a potential bio-nanogate. It is hypothesized that the presence of anti-HBsAg has a higher affinity towards MBP-aD which may displace PAMAM G4 in the anti-HBsAg detection system. This interaction study is crucial as an initial platform of using peptide-PAMAM as a bio-nanogate in an antibody detection system.
    Matched MeSH terms: Nanoparticles/chemistry*
  7. Surendra TV, Mohana Roopan S, Khan MR
    Biotechnol Prog, 2019 07;35(4):e2823.
    PMID: 31017346 DOI: 10.1002/btpr.2823
    The rare earth metal oxide nanoparticles such as gadolinium oxide nanoparticles (Gd2 O3 NPs) have been synthesized by green synthesis process using methanolic extract of Moringa oleifera (M oleifera) peel. In this process, the Gd2 O3 NPs formation was observed at 280-300 nm in UV-Vis spectroscopy. The XRD pattern of the synthesized Gd2 O3 NPs was exactly matched with JCPDS No 3-065-3181which confirms the crystalline nature of Gd2 O3 NPs. In addition, Energy-dispersive X-ray spectroscopy (EDX) analysis was stated that Gd and O elements were present as 70.31 and 29.69%, respectively in Gd2 O3 NPs. The SEM and TEM analysis were said Gd2 O3 NPs are in rod shape and 26 ± 2 nm in size. Further the synthesized Gd2 O3 NPs were confirmed by X-ray photoemission spectroscopy (XPS). The synthesized Gd2 O3 NPs were further examined for anti-fungal activity against Alternaria saloni (A saloni) and Sclerrotium rolfsii (S rolfsii) and it showed moderate activity. Also, Gd2 O3 NPs evaluated as good antibacterial agent against different Gram +ve and Gram -ve bacteria. Moreover, the toxicity of the Gd2 O3 NPs on red blood cells (RBCs) of the human blood was determined using hemolytic assay, the obtained results were stated the synthesized Gd2 O3 NPs are nontoxic to the human erythrocytes. The photocatalytic activity against malachite green (MG) dye was tested and confirmed as 92% of dye was degraded within 2 hr by Gd2 O3 NPs. The results were stated the green synthesized Gd2 O3 NPs are good anti-fungal agents, nontoxic and we can use as a photocatalyst. Copyright © 2019 John Wiley & Sons, Ltd.
    Matched MeSH terms: Nanoparticles/chemistry*
  8. Supramaniam J, Adnan R, Mohd Kaus NH, Bushra R
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):640-648.
    PMID: 29894784 DOI: 10.1016/j.ijbiomac.2018.06.043
    Magnetic nanocellulose alginate hydrogel beads are produced from the assembly of alginate and magnetic nanocellulose (m-CNCs) as a potential drug delivery system. The m-CNCs were synthesized from cellulose nanocrystals (CNCs) that were isolated from rice husks (RH) by co-precipitation method and were incorporated into alginate-based hydrogel beads with the aim of enhancing mechanical strength and regulating drug release behavior. Ibuprofen was chosen as a model drug. The prepared CNCs, m-CNCs and the alginate hydrogel beads were characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer studies (VSM). Besides the magnetic property, the presence of m-CNCs increased the integrity of the alginate hydrogel beads and the swelling percentage. The drug release study exhibited a controlled release profiles and based on the drug release data, the drug release mechanism was analyzed and discussed based on mathematical models such as Korsmeyer-Peppas and Peppas-Sahlin.
    Matched MeSH terms: Nanoparticles/chemistry*
  9. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  11. Suk KH, Gopinath SCB
    Curr Med Chem, 2017;24(30):3310-3321.
    PMID: 28464786 DOI: 10.2174/0929867324666170502122444
    BACKGROUND: Drug encapsulated nanoparticle has the potency to act as an effective antidote for various diseases. It is possible to enhance the bioavailability of drug encapsulated nanoparticle, whereby the yield is significantly higher compared to the standard formulation. The development with drug encapsulated nanoparticle has been improved drastically after demonstrating its capability of showing the enhanced thermophysical properties and stability of the drug. It is also utilized widely in cancer diagnoses, whereby the surface of the nanoparticle can be modified to enable the nanocarriers to reach the targeted location. Thus, the encapsulated nanoparticle can reveal neural stem cell differentiation due to the multifaceted nature and the biophysical cues to control the cell differentiation.

    OBJECTIVE: In this overview, different advantages of the drug encapsulated nanoparticle for the downstream applications are narrated with its appealing characteristics.

    CONCLUSION: The application of the drug encapsulated nanoparticle is unrestricted as it can be customized to the specific target cell in the living system.

    Matched MeSH terms: Nanoparticles/chemistry*
  12. Subramanian P, Rajnikanth PS, Kumar M, Chidambram K
    Curr Drug Deliv, 2020;17(1):74-86.
    PMID: 31721703 DOI: 10.2174/1567201816666191112111610
    OBJECTIVE: A novel, Supersaturable Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) has been prepared to improve the Dutasteride's poor aqueous solubility.

    METHODS: By adding Hydroxy Propyl Methyl Cellulose (HPMC) as a precipitation inhibitor to conventional SNEDDS, a supersaturable system was prepared. Firstly, the prepared SNEDDS played an important role in increasing the aqueous solubility and hence oral absorption due to nano-range size. Secondly, the S-SNEDDS found to be advantageous over SNEDDS for having a higher drug load and inhibition of dilution precipitation of Dutasteride. Formulated S-SNEDDS (F1-F9) ranged from 37.42 ± 1.02 to 68.92 ± 0.09 nm with PDI 0.219-0.34 and drug loading of over 95 percent.

    RESULTS: The study of in-vitro dissolution revealed higher dissolution for S-SNEDDS compared to SNEDDS and Avodart soft gelatin capsule as a commercial product. In addition, higher absorption was observed for S-SNEDDS showing approximately 1.28 and 1.27 fold AUC (0-24h) and Cmax compared to commercial products. Therefore, S-SNEDDS has proven as a novel drug delivery system with a higher drug load, higher self-emulsification efficiency, higher stability, higher dissolution and pronounced absorption.

    CONCLUSION: In conclusion, S-SNEDDS could be a newly emerging approach to enhance aqueous solubility in many folds for drugs belonging to BCS Class II and IV and thus absorption and oral bioavailability.

    Matched MeSH terms: Nanoparticles/chemistry*
  13. Subramaniam T, Fauzi MB, Lokanathan Y, Law JX
    Int J Mol Sci, 2021 Jun 17;22(12).
    PMID: 34204292 DOI: 10.3390/ijms22126486
    Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
    Matched MeSH terms: Nanoparticles/chemistry
  14. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):20067-83.
    PMID: 26300364 DOI: 10.1007/s11356-015-5253-5
    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  15. Subin TS, Vijayan V, Kumar KJR
    Pharm Nanotechnol, 2017;5(3):180-191.
    PMID: 28641516 DOI: 10.2174/2211738505666170615095542
    BACKGROUND: Nanomedicine is a branch which deals with medicinal products, devices, nonbiological complex drugs and antibody-nanoparticle conjugates and general health products that are manufactured using nanotechnology.

    OBJECTIVE: Nano-medicine provides the same efficacies as traditional medicines owing to their improved solubility and bioavailability with reduced dosages. However, there are currently safety concerns due to the difficulties related to nanomaterial characterization; this might be the reason for unawareness of such medicines among the patients. The absence of clear regulatory guidelines further complicates matters, as it makes the path to registering them with regulatory bodies difficult. However, some products have overcome these obstacles and have been registered. While there are many international initiatives to harmonize the regulatory requirements and helps the industry to determine the most important characteristics that influence in vivo product performance.

    CONCLUSION: This review focuses on the various types of nanopharmaceuticals, and developments process with strategies tailored to upcoming regulations may satisfy the patients' needs.

    Matched MeSH terms: Nanoparticles/chemistry
  16. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW
    Ann Bot, 2013 Oct;112(6):1141-8.
    PMID: 23960046 DOI: 10.1093/aob/mct172
    BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

    METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

    KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

    Matched MeSH terms: Nanoparticles/chemistry
  17. SreeHarsha N, Maheshwari R, Al-Dhubiab BE, Tekade M, Sharma MC, Venugopala KN, et al.
    Int J Nanomedicine, 2019;14:7419-7429.
    PMID: 31686814 DOI: 10.2147/IJN.S211224
    Background: Prostate cancer (PC) has the highest prevalence in men and accounts for a high rate of neoplasia-related death. Doxorubicin (DOX) is one of the most widely used anti-neoplastic drugs for prostate cancer among others. However, it has low specificity and many side effects and affects normal cells. More recently, there have been newly developed drug delivery tools which are graphene or graphene-based, used to increase the specificity of the delivered drug molecules. The graphene derivatives possess both π-π stacking and increased hydrophobicity, factors that increase the likelihood of drug delivery. Despite this, the hydrophilicity of graphene remains problematic, as it induced problems with stability. For this reason, the use of a chitosan coating remains one way to modify the surface features of graphene.

    Method: In this investigation, a hybrid nanoparticle that consisted of a DOX-loaded reduced graphene oxide that is stabilized with chitosan (rGOD-HNP) was developed.

    Result: The newly developed rGOD-HNP demonstrated high biocompatibility and efficiency in entrapping DOX (~65%) and releasing it in a controlled manner (~50% release in 48 h). Furthermore, it was also demonstrated that rGOD-HNP can intracellularly deliver DOX and more specifically in PC-3 prostate cancer cells.

    Conclusion: This delivery tool offers a feasible and viable method to deliver DOX photo-thermally in the treatment of prostate cancer.

    Matched MeSH terms: Nanoparticles/chemistry*
  18. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Nanoparticles/chemistry*
  19. Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK
    J Colloid Interface Sci, 2016 Nov 01;481:107-16.
    PMID: 27459173 DOI: 10.1016/j.jcis.2016.07.020
    Gemcitabine (GmcH) is an effective anti-cancer agent used in the chemotherapy of lung cancer. However, the clinical applications of GmcH has been impeded primarily due to its low blood residence time, unfavorable pharmacokinetic and pharmacodynamic (PK/PD) profile, and poor penetration in the complex environment of lung cancer cells. Thus, the present study aims to formulate GmcH loaded mannosylated solid lipid nanoparticles (GmcH-SLNs) for improving its drug uptake into the lung cancer cells. GmcH-SLNs were prepared by emulsification and solvent evaporation process, and surface modification was done with mannose using ring opening technique. The cellular toxicity and cell uptake studies were performed in A549 lung adenocarcinoma cell line. The developed nanoformulation appears to be proficient in targeted delivery of GmcH with improved therapeutic effectiveness and enhanced safety.
    Matched MeSH terms: Nanoparticles/chemistry*
  20. Song F, Yang Y, Gopinath SCB
    Biotechnol Appl Biochem, 2021 Jun;68(3):683-689.
    PMID: 32628799 DOI: 10.1002/bab.1980
    A high-performance interdigitated electrode (IDE) biosensing surface was reported here by utilizing self-assembled silica nanoparticle (SiNP). The modified surface was used to evaluate the complementation of hairpin forming region from Mitoxantrone resistance gene 7 (MXR7; liver cancer-related short gene). The conjugated SiNPs on 3-aminopropyl triethoxysilane functionalization were captured with probe sequence on IDE biosensing surface. The physical and chemically modified surface was used to quantify MXR7 and an increment in the current response upon complementation was noticed. Limit of target DNA detection was calculated (1-10 fM) and this label-free detection is at the comparable level to the fluorescent-based sensing. A linear regression was calculated [y = 0.243x - 0.0773; R² = 0.9336] and the sensitivity was 1 fM on the linear range of 1 fM to 10 pM. With the strong attachment of capture DNA on IDE through SiNP, the surface clearly discriminates the specificity (complementary) versus nonspecificity (complete-, single-, and triple-mismatched sequences). This detection strategy helps to determine liver cancer progression and the similar strategy can be followed for other gene sequence complementation.
    Matched MeSH terms: Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links