METHODS: Observing anti-urolithiathic activity via in vitro nucleation and aggregation assay using a spectrophotometer followed by microscopic observation. A total of 12 methanolic extracts were tested to determine the potential extracts in anti-urolithiasis activities. Cystone was used as a positive control.
RESULTS: The results manifested an inhibition of nucleation activity (0.11 ± 2.32% to 55.39 ± 1.01%) and an aggregation activity (4.34 ± 0.68% to 58.78 ± 1.81%) at 360 min of incubation time. The highest inhibition percentage in nucleation assay was obtained by the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic pseudo-stem extract (2D) which was 55.39 ± 1.01%at 60 min of incubation time compared to the cystone at 30.87 ± 0.74%. On the other hand,the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic bagasse extract (3D) had the highest inhibition percentage in the aggregation assay incubated at 360 min which was obtained at 58.78 ± 1.8%; 5.53% higher than the cystone (53.25%).The microscopic image showed a great reduction in the calcium oxalate (CaOx) crystals formation and the size of crystals in 2D and 3D extracts, respectively, as compared to negative control.
CONCLUSIONS: The results obtained from this study suggest that the extracts are potential sources of alternative medicine for kidney stones disease.
METHODS: Endophytic bacteria were isolated from the leaves of L. leucocephala and 16S rRNA gene sequencing was used to establish their identity. The in vitro antioxidant effect of endophytic crude extract (LL) was evaluated using 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical scavenging methods. The in vitro antidiabetic properties of LL were evaluated using α-amylase and α-glucosidase enzyme inhibition assay.
RESULTS: The isolated endophytic bacteria were identified as Cronobacter sakazakii. LL displayed potent free radical scavenging effect against ABTS and DPPH radicals with an inhibitory concentration 50% (IC50) value of 17.49 ± 0.06 and 11.3 ± 0.1 μg/mL respectively. LL exhibited α-amylase and α-glucosidase inhibition with an IC50 value of 23.3 ± 0.08 and 23.4 ± 0.1 μg/mL respectively compared to the standard drug (acarbose). Both glucose loaded normoglycemic rats and STZ induced diabetic rats treated with LL (200 mg/kg) exhibited a considerable reduction in blood glucose levels p<0.01 after 8 h of treatment when compared to normal and diabetic control rats respectively.
CONCLUSIONS: Thus, the study shows that LL has a wellspring of natural source of antioxidants, and antidiabetic agents and phytoconstituents present in endophytes could be the rich source for bioactive compounds.
METHOD: The extracts were prepared using Soxhlet apparatus for ethanol and hexane extracts while the water extracts were freeze-dried. In vitro cytotoxic activities of B. frutescens extracts of various concentrations (20 to 160 μg/mL) at 24, 48, and 72 hours time points were studied using MTT in chemically induced hypoxic condition and in 3-dimensional in vitro cell culture system. An initial characterisation of B. frutescens extracts was carried out using Fourier-transform Infrared- Attenuated Total Reflection (FTIR-ATR) to determine the presence of functional groups.
RESULTS: All leaf extracts except for water showed IC50 values ranging from 23 -158 μg/mL. Hexane extract showed the lowest IC50 value (23 μg/mL), indicating its potent cytotoxic activity. Among the branch extracts, only the 70% ethanolic extract (B70) showed an IC50 value. The hexane leaf extract tested on 3- dimensional cultured cells showed an IC50 value of 17.2 μg/mL. The FTIR-ATR spectroscopy analysis identified various characteristic peak values with different functional groups such as alcohol, alkenes, alkynes, carbonyl, aromatic rings, ethers, ester, and carboxylic acids. Interestingly, the FTIR-ATR spectra report a complex and unique profile of the hexane extract, which warrants further investigation.
CONCLUSION: Adaptation of tumour cells to hypoxia significantly contributes to the aggressiveness and chemoresistance of different tumours. The identification of B. frutescens and its possible role in eliminating breast cancer cells in hypoxic conditions defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.