Displaying publications 81 - 100 of 111 in total

Abstract:
Sort:
  1. Sangetha S, Zuraini Z, Sasidharan S, Suryani S
    Nihon Ishinkin Gakkai Zasshi, 2008;49(4):299-304.
    PMID: 19001757
    The fungicidal activity of Cassia spectabilis leaf extracts was investigated using the disk diffusion technique and the broth dilution method. The extract showed a favorable antimicrobial activity against Candida albicans with a minimum inhibition concentration(MIC) value of 6.25 mg / ml. Apart from the fungicidal effects, imaging using scanning electron microscopy (SEM) was done to determine the major alterations in the microstructure of the C. albicans. The main abnormalities noted in the SEM studies were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The in vitro time-kill study performed using the leaf extract at 1/2, 1 or 2 times of the MIC significantly inhibited the yeast growth with a noticeable drop in optical density (OD) of yeast culture, thus confirming the fungicidal effect of the extract on C. albicans. In addition, in vivo antifungal activity studies on candidiasis in mice showed a 5-fold decrease in Candida in kidneys and blood samples in the groups of animals treated with the extract (2.5 g / kg body weight). In an acute toxicity study using mice, the acute minimum fatal dose of the extract was greater than 2000 mg / kg, and we found no histopathological changes in macroscopic examination by necropsy of mice treated with extract. We conclude that the extract may be safely used as an anticandidal agent.
    Matched MeSH terms: Plant Extracts/toxicity
  2. Chaudhry SRY, Akram A, Aslam N, Wajid M, Iqbal Z, Nazir I, et al.
    Pak J Pharm Sci, 2019 Mar;32(2):505-514.
    PMID: 31081759
    Echinops echinatus is traditionally an important plant that finds its extensive use as a diuretic, anti-inflammatory, anti-pyretic, nerve tonic, abortifacient, aphrodisiac, antiasthmatic, and antidiabetic agent. The current study investigates protection against the hyperglycemia and dyslipidemia in alloxan-induced (type I diabetes) and fructose-fed insulin resistance (type II diabetes) models of diabetes treated with aqueous methanolic root extract of E. echinatus (Ee.Cr). Albino rats were treated orally with Ee.Cr at doses 100, 300 and 500mg/kg. The fasting blood glucose was measured by glucometer, while standard kits were used to determine the levels of serum total cholesterol, triglycerides and HDL. The administration of Ee.Cr significantly (P<0.001) reduced the FBG concentration in a dose-dependent pattern in alloxan-induced and fructose-fed diabetic rats. The Ee.Cr also corrected the dyslipidemia associated with fructose and alloxan-induced diabetes by significantly (P<0.001) decreasing the concentration of serum total cholesterol, triglycerides, and LDL and by increasing HDL concentration. Ee.Cr also significantly (P<0.001) improved the glucose tolerance in fructose-fed rats. We conclude that Ee.Cr has antidiabetic and antidyslipidemic effects in both insulin-dependent alloxan-induced diabetes and fructose-induced insulin resistance diabetes rat models.
    Matched MeSH terms: Plant Extracts/toxicity
  3. Nasir NLM, Kamsani NE, Mohtarrudin N, Tohid SFM, Zakaria ZA
    Pak J Pharm Sci, 2020 Sep;33(5):2009-2016.
    PMID: 33824108
    Muntingia calabura (M. calabura), locally known as "kerukup siam" or "buah ceri" belongs to the family Muntingiaceae and has been scientifically demonstrated to exert various pharmacological activities. The objectives of the current study are to evaluate the antioxidant activities and to determine the subchronic toxicity of 90 days orally-administered methanol extract of M. calabura (MEMC) in male Sprague Dawley rats. The rats were randomly divided into four groups (n=6). Vehicle control received 8% tween 80 and treatment group received 50, 250 and 500 mg/kg of MEMC orally administered daily for 90 days. Blood collection was carried out to obtain the hematological and biochemical profile of the rats. The organs harvested were subjected to histopathological analysis. For the antioxidant test, the extract was subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH)- and superoxide anion-radical scavenging activity, total phenolic content (TPC) and phytochemical screening. Results obtained show that no adverse effects were observed during the experimental period. Hematological and biochemical analysis also showed no significant changes in this toxicity study. Besides, antioxidant analyses revealed that MEMC has higher DPPH- and SOD-radical scavenges activity as well as higher TPC value. In conclusion, M. calabura is safe for consumption and possesses beneficial antioxidant effect.
    Matched MeSH terms: Plant Extracts/toxicity*
  4. Chan YS, Cheah YH, Chong PZ, Khor HL, Teh WS, Khoo KS, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):119-127.
    PMID: 29348093
    This study was conducted to investigate the antifungal potential and cytotoxicity of selected medicinal plants from Malaysia. The extracts from the stem of Cissus quadrangularis and the leaves of Asplenium nidus, Pereskia bleo, Persicaria odorata and Sauropus androgynus were assayed against six fungi using p-iodonitrotetrazolium-based on colorimetric broth microdilution method. All the plant extracts were found to be fungicidal against at least one type of fungus. The strongest fungicidal activity (minimum fungicidal concentration=0.16 mg/mL) were exhibited by the hexane extract of C. quadrangularis, the hexane, chloroform, ethanol and methanol extracts of P. bleo, the hexane and ethyl acetate extracts of P. odorata, and the water extract of A. nidus. In terms of cytotoxicity on the African monkey kidney epithelial (Vero) cells, the chloroform extract of P. odorata produced the lowest 50% cytotoxic concentration (100.3 ± 4.2 μ g/mL). In contrast, none of the water extracts from the studied plants caused significant toxicity on the cells. The water extract of A. nidus warrants further investigation since it showed the strongest fungicidal activity and the highest total activity (179.22 L/g) against Issatchenkia orientalis, and did not cause any toxicity to the Vero cells.
    Matched MeSH terms: Plant Extracts/toxicity*
  5. Hisam EE, Zakaria ZA, Mohtaruddin N, Rofiee MS, Hamid HA, Othman F
    Pharm Biol, 2012 Dec;50(12):1498-507.
    PMID: 22954284 DOI: 10.3109/13880209.2012.685945
    CONTEXT: Bauhinia purpurea L. (Fabaceae) is a native plant species of many Asian countries, including Malaysia and India. In India, the root, stem, bark, and leaf of B. purpurea are used to treat various ailments, including ulcers and stomach cancer.
    OBJECTIVE: In an attempt to establish its pharmacological potential, we studied the antiulcer activity of lipid-soluble extract of B. purpurea obtained via extraction of air-dried leaves using chloroform.
    MATERIALS AND METHODS: The rats were administered the chloroform extract (dose range of 100-1000 mg/kg) orally after 24 h fasting. They were subjected to the absolute ethanol- and indomethacin-induced gastric ulcer, and pyloric ligation assays after 30 min. The acute toxicity study was conducted using a single oral dose of 5000 mg/kg extract and the rats were observed for the period of 14 days. omeprazole (30 mg/kg) was used as the standard control.
    RESULTS: At 5000 mg/kg, the extract produced no sign of toxicity in rats. The extract exhibited significant (p < 0.05) dose-dependent antiulcer activity for the ethanol-induced model. The extract also significantly (p < 0.05) increased the gastric wall mucus production and pH of gastric content, while significantly (p < 0.05) reducing the total volume and total acidity of the gastric content in the pylorus ligation assay.
    DISCUSSION AND CONCLUSION: The extract possesses antiulcer, antisecretory and cytoprotective activities, which could be attributed to its flavonoid and tannin content. These findings provide new information regarding the potential of lipid-soluble compounds of B. purpurea for the prevention and treatment of gastric ulcers.
    Matched MeSH terms: Plant Extracts/toxicity
  6. Latha LY, Darah I, Jain K, Sasidharan S
    Pharm Biol, 2010 Jan;48(1):101-4.
    PMID: 20645763 DOI: 10.3109/13880200903046203
    The methanol extract of Vernonia cinerea Less (Asteraceae), which exhibited antimicrobial activity, was tested for toxicity. In an acute toxicity study using mice, the median lethal dose (LD(50)) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. As well as the oral acute toxicity study, the brine shrimp lethality test was also done. Brine shrimp test LC(50) values were 3.87 mg/mL (6 h) and 2.72 mg/mL (24 h), exhibiting no significant toxicity result. In conclusion, the methanol extract of V. cinerea did not produce toxic effects in mice and brine shrimp.
    Matched MeSH terms: Plant Extracts/toxicity*
  7. Dey YN, Sharma G, Wanjari MM, Kumar D, Lomash V, Jadhav AD
    Pharm Biol, 2017 Dec;55(1):53-62.
    PMID: 27600166
    CONTEXT: The tuber of Amorphophallus paeoniifolius (Dennst.) Nicolson (Araceae), commonly called Suran or Jimmikand, has high medicinal value and is used ethnomedicinally for the treatment of different gastrointestinal and inflammatory disorders.

    OBJECTIVE: The present study evaluated the effects of extracts of Amorphophallus paeoniifolius tubers on acetic acid-induced ulcerative colitis (UC) in rats.

    MATERIALS AND METHODS: Wistar rats were orally administered methanol extract (APME) or aqueous extract (APAE) (250 and 500 mg/kg) or standard drug, prednisolone (PRDS) (4 mg/kg) for 7 days. On 6th day of treatment, UC was induced by transrectal instillation of 4% acetic acid (AA) and after 48 h colitis was assessed by measuring colitis parameters, biochemical estimations and histology of colon.

    RESULTS: APME or APAE pretreatment significantly (p 

    Matched MeSH terms: Plant Extracts/toxicity
  8. Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR
    Pharm Biol, 2017 Dec;55(1):1093-1113.
    PMID: 28198202 DOI: 10.1080/13880209.2017.1288749
    CONTEXT: Medicinal plants have attracted global attention for their hidden therapeutic potential. Clinacanthus nutans (Burm.f) Lindau (Acanthaceae) (CN) is endemic in Southeast Asia. CN contains phytochemicals common to medicinal plants, such as flavonoids. Traditionally, CN has been used for a broad range of human ailments including snake bites and cancer.

    OBJECTIVES: This article compiles the ethnomedicinal uses of CN and its phytochemistry, and thus provides a phytochemical library of CN. It also discusses the known pharmacological and biological effects of CN to enable better investigation of CN.

    METHODS: This literature review was limited to articles and websites published in the English language. MEDLINE and Google Scholar databases were searched from December 2014 to September 2016 using the following keywords: "Clinacanthus nutans" and "Belalai gajah". The results were reviewed to identify relevant articles. Information from relevant selected studies was systematically analyzed from contemporary ethnopharmacological sources, evaluated against scientific literature, and extracted into tables.

    RESULTS: The literature search yielded 124 articles which were then further scrutinized revealing the promising biological activities of CN, including antimicrobial, antiproliferative, antitumorigenic and anti-inflammatory effects. Few articles discussed the mechanisms for these pharmacological activities. Furthermore, CN was beneficial in small-scale clinical trials for genital Herpes and aphthous stomatitis.

    CONCLUSION: Despite the rich ethnomedicinal knowledge behind the traditional uses of CN, the current scientific evidence to support these claims remains scant. More research is still needed to validate these medicinal claims, beginning by increasing the understanding of the biological actions of this plant.

    Matched MeSH terms: Plant Extracts/toxicity
  9. Abdullah NR, Ismail Z, Ismail Z
    Phytomedicine, 2009 Mar;16(2-3):222-6.
    PMID: 17498941
    The acute toxicity of standardized extract of Orthosiphon stamineus was studied in Sprague Dawley rats. The rats were administered a single dose of 5000 mg/kg body weight (BW) orally on Day 0 and observed for 14 days. There were no deaths recorded and the animals did not show signs of toxicity during the experimental period. The effect of the extract on general behavior, BW, food and water intake, relative organ weight per 100 g BW, hematology and clinical biochemistry were measured. All the parameters measured were unaffected as compared to the control. The acute toxicity LD(50) was estimated to be > 5000 mg/kg BW.
    Matched MeSH terms: Plant Extracts/toxicity*
  10. Nurhanan MY, Azimahtol Hawariah LP, Mohd Ilham A, Mohd Shukri MA
    Phytother Res, 2005 Nov;19(11):994-6.
    PMID: 16317660 DOI: 10.1002/ptr.1759
    The methanol, n-butanol, chloroform and water extracts obtained from the root of Eurycoma longifolia Jack were assayed using methylene blue assay to evaluate its cytotoxic effect against KB, DU-145, RD, MCF-7, CaOV-3, MDBK cell lines. The results showed that all the root extracts except the water extract of E. longifolia produced significant cytotoxic effect on these cell lines. However, no significant cytotoxic effect was detected on MDBK (kidney) normal cell line. 9-methoxycanthin-6-one, an alkaloid, was detected in each extract with different intensities by reversed-phase high performance liquid chromatography.
    Matched MeSH terms: Plant Extracts/toxicity*
  11. Hussain K, Ismail Z, Sadikun A, Ibrahim P
    Planta Med, 2010 Mar;76(5):418-25.
    PMID: 19862670 DOI: 10.1055/s-0029-1186279
    The present study aimed to investigate standardized ethanol extracts of fruit and leaves of Piper sarmentosum for their in vivo antioxidant activity in rats using a CCl (4)-induced oxidative stress model. The standardization was based on the quantification of the markers pellitorine, sarmentine and sarmentosine by high performance liquid chromatography (HPLC), and determination of total primary and secondary metabolites. The rats, divided into 7 groups each (n = 6), were used as follows: group 1 (CCl (4), negative control), group 2 (untreated, control), groups 3 and 4 (fruit extract 250 and 500 mg/kg, respectively), groups 5 and 6 (leaf extract 250 and 500 mg/kg, respectively) and group 7 (vitamin-E 100 mg/kg, positive control). The doses were administered orally for 14 days; 4 h following the last dose, a single dose of CCl (4) (1.5 mg/kg) was given orally to all the groups except group 2, and after 24 h, blood and liver of each animal were obtained. Analysis of plasma and liver homogenate exhibited significant preservation of markers of antioxidant activity, total plasma antioxidant activity (TPAA), total protein (TP), superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid reactive species (TBARS), in the pretreated groups as compared to the CCl (4) group (p < 0.05). Histology of the liver also evidenced the protection of hepatocytes against CCl (4) metabolites in the pretreated groups. The results of this study indicate the IN VIVO antioxidant activity of both extracts of the plant, which may be valuable to combat diseases involving free radicals.
    Matched MeSH terms: Plant Extracts/toxicity
  12. Bharathithasan M, Ravindran DR, Rajendran D, Chun SK, Abbas SA, Sugathan S, et al.
    PLoS One, 2021;16(11):e0260281.
    PMID: 34843539 DOI: 10.1371/journal.pone.0260281
    BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae).

    METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.

    RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.

    CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.

    Matched MeSH terms: Plant Extracts/toxicity*
  13. Christapher PV, Parasuraman S, Asmawi MZ, Murugaiyah V
    Regul Toxicol Pharmacol, 2017 Jun;86:33-41.
    PMID: 28229903 DOI: 10.1016/j.yrtph.2017.02.005
    Medicinal plant preparations may contain high levels of toxic chemical constituents to potentially cause serious harm to animals and/or humans. Thus, toxicity studies are important to assess the toxic effects of plant derived products. Polygonum minus is used traditionally for different ailments in Southeast Asia. This study was conducted to establish the acute and subchronic toxicity profile of the methanol extract of P. minus leaves. The acute toxicity study showed that the methanol extract of P. minus is safe even at the highest dose tested of 2000 mg/kg in female Sprague Dawley rats. There were no behavioural or physiological changes and gross pathological abnormalities observed. The subchronic toxicity study of methanol extract of P. minus at 250, 500, 1000 and 2000 mg/kg were conducted in both sexes of Sprague Dawley rats. There were no changes observed in the extract treated animal's body weight, food and water intake, motor coordination, behaviour and mental alertness. The values of haematological and biochemical parameters were not different between the treated and control animals. The relative organ weights of extract-treated animals did not differ with that of control animals. Based on the present findings, the methanol extract of P. minus leaves could be considered safe up to the dose of 2000 mg/kg.
    Matched MeSH terms: Plant Extracts/toxicity*
  14. Mohamad Shalan NAA, Mustapha NM, Mohamed S
    Regul Toxicol Pharmacol, 2017 Feb;83:46-53.
    PMID: 27871867 DOI: 10.1016/j.yrtph.2016.11.022
    Noni (Morinda citrifolia) leaf and fruit are used as food and medicine. This report compares the chronic toxicity of Noni fruit and edible leaf water extracts (two doses each) in female mice. The 6 months study showed the fruit extract produced chronic toxicity effects at the high dose of 2 mg/ml drinking water, evidenced through deteriorated liver histology (hepatocyte necrosis), reduced liver length, increased liver injury marker AST (aspartate aminotransferase) and albumin reduction, injury symptoms (hypoactivity, excessive grooming, sunken eyes and hunched posture) and 40% mortality within 3 months. This hepatotoxicity results support the six liver injury reports in humans which were linked to chronic noni fruit juice consumption. Both doses of the leaf extracts demonstrated no observable toxicity. The hepatotoxicity effects of the M. citrifolia fruit extract in this study is unknown and may probably be due to the anthraquinones in the seeds and skin, which had potent quinone reductase inducer activity that reportedly was 40 times more effective than l-sulforaphane. This report will add to current data on the chronic toxicity cases of Morinda citrifolia fruit. No report on the chronic toxicity of Morinda citrifolia fruit in animal model is available for comparison.
    Matched MeSH terms: Plant Extracts/toxicity*
  15. Lakshmanan H, Raman J, Pandian A, Kuppamuthu K, Nanjian R, Sabaratam V, et al.
    Regul Toxicol Pharmacol, 2016 Aug;79:25-34.
    PMID: 27177820 DOI: 10.1016/j.yrtph.2016.05.010
    Senecio candicans DC. (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris, district, Tamil Nadu. The present investigation was carried out to evaluate the sub-chronic toxicity of an aqueous extract of Senecio candicans (AESC) plant in Wistar albino rats. The study was conducted in consideration of the OECD 408 study design (Repeated Dose 90-Day Oral Toxicity Study in Rodents) and the extract was administered via gavage at doses of 250, 500 or 750 mg/kg body weight per day for 90-days. Hematological, biochemical parameters were determined on days 0, 30, 60 and 90 of administration. Animals were euthanized after 90 d treatment and its liver and kidney sections were taken for histological study. The results of sub-chronic study showed significant increase (P plant may develop kidney and liver toxicity. Further studies on the isolation and characterization of PAs are necessary to determine the safe dose level of the extract for therapeutic use in traditional medicine.
    Matched MeSH terms: Plant Extracts/toxicity*
  16. Hor SY, Ahmad M, Farsi E, Yam MF, Hashim MA, Lim CP, et al.
    Regul Toxicol Pharmacol, 2012 Jun;63(1):106-14.
    PMID: 22440551 DOI: 10.1016/j.yrtph.2012.03.006
    Recently, the fruits of Hylocereus polyrhizus, known as red dragon fruit, have received much attention from growers worldwide. However, there is little toxicological information regarding the safety of repeated exposure to these fruits. The present study evaluated the potential toxicity of a methanol extract of H. polyrhizus fruit after acute and subchronic administration in rats. In the acute toxicity study, single doses of fruit extract (1250, 2500 and 5000 mg/kg) were administered to rats by oral gavage, and the rats were then monitored for 14 days. In the subchronic toxicity study, the fruit extract was administered orally to rats at doses of 1250, 2500 and 5000 mg/kg/day for 28 days. There was no mortality or signs of acute or subchronic toxicity. There was no significant difference in body weight, relative organ weight or hematological parameters in the subchronic toxicity study. Biochemical analysis showed some significant changes, including creatinine, globulin, total protein and urea levels. No abnormality of internal organs was observed between treatment and control groups. The lethal oral dose of the fruit extract is more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of the extract for both male and female rats is considered to be 5000 mg/kg per day for 28 days.
    Matched MeSH terms: Plant Extracts/toxicity*
  17. Hassan Z, Singh D, Suhaimi FW, Chear NJ, Harun N, See CP, et al.
    Regul Toxicol Pharmacol, 2023 Sep;143:105466.
    PMID: 37536550 DOI: 10.1016/j.yrtph.2023.105466
    Mitragyna speciosa Korth also known as kratom, is an herbal drug preparation for its therapeutic properties and opioid-replacement therapy. Kratom is consumed in a brewed decoction form in Malaysia and to date, no studies have characterized its chemical and toxicity profile. Thus, this study aims to evaluate kratom decoction's safety and toxicity profile after 28 days of treatment. Mitragynine content was quantified in kratom decoction and used as a marker to determine the concentration. Male and female Sprague Dawley rats were orally treated with vehicle or kratom decoction (10, 50 or 150 mg/kg) and two satellite groups were treated with vehicle and kratom decoction (150 mg/kg). Blood and organs were collected for hematology, biochemical and histopathology analysis at the end of treatment. No mortality was found after 28 days of treatment and no significant changes in body weight and hematology profile, except for low platelet count. High amounts of uric acid, AST, ALT and alkaline phosphatase were found in the biochemical analysis. Histological investigation of the heart and lungs detected no alterations except for the kidney, liver and brain tissues. In conclusion, repeated administration of kratom decoction provided some evidence of toxicity in the kidney and liver with no occurrence of mortality.
    Matched MeSH terms: Plant Extracts/toxicity
  18. Aliyu A, Shaari MR, Ahmad Sayuti NS, Reduan FH, Sithambaram S, Mohamed Mustapha N, et al.
    Sci Prog, 2021 Oct;104(4):368504211004272.
    PMID: 34886737 DOI: 10.1177/00368504211004272
    Moringa oleifera (M. oleifera) Lam belongs to the family Moringaceae. It is an important multipurpose tree that is largely distributed globally and has been used almost in every aspect of traditional medicine for the treatment of various illnesses including cancers, diabetes mellitus, asthma, arthritis, etc. This study investigated the effects of oral acute and sub-acute administration of M. oleifera hydroethanolic leaf extract (MOHE) in ICR-mice. Its major phenolic compounds were also determined. Ten (10) female, 8-week old mice were grouped into control and treatment groups for acute toxicity study. A dose of 2000 mg/kg MOHE was given once to the treatment group via oral gavage. However, for the sub-acute toxicity study, 25 mice were grouped into groups A (control), B (125 mg/kg), C (250 mg/kg), D (500 mg/kg) and E (1000 mg/kg). MOHE was given via oral gavage to groups B, C, D and E daily for 28 days. Group A received only distilled water. The mice were sacrificed at the end of the experiments and samples were collected for evaluation. The results of the chemical profiling of MOHE revealed the presence of glucomoringin, niaziminine, quercetin and kaempferol as the major compounds. The treated mice in the acute toxicity study were slightly anaemic and showed evidence of stress leukogram. Moreover, a slight increase in creatinine, significant increases in AST and CK, hepatic degeneration and necrosis, none-obstructive sinusoidal dilatation, renal tubular necrosis, interstitial nephritis and renal interstitial oedema were observed. It is concluded that the LD50 of MOHE is higher than 2000 mg/kg. However, oral administration of MOHE causes acute mild anaemia and moderate hepato-nephrotoxicity in ICR-mice. Its major phenolic compounds are glucomoringin, niaziminine, quercetin and kaempferol.
    Matched MeSH terms: Plant Extracts/toxicity
  19. Zainol Abidin IZ, Fazry S, Jamar NH, Ediwar Dyari HR, Zainal Ariffin Z, Johari AN, et al.
    Sci Rep, 2020 08 25;10(1):14165.
    PMID: 32843675 DOI: 10.1038/s41598-020-70962-7
    In Malaysia, Piper sarmentosum or 'kaduk' is commonly used in traditional medicines. However, its biological effects including in vivo embryonic toxicity and tissue regenerative properties are relatively unknown. The purpose of this study was to determine zebrafish (Danio rerio) embryo toxicities and caudal fin tissue regeneration in the presence of P. sarmentosum aqueous extracts. The phytochemical components and antioxidant activity of the extract were studied using GC-MS analysis and DPPH assay, respectively. Embryo toxicity tests involving survival, heartbeat, and morphological analyses were conducted to determine P. sarmentosum extract toxicity (0-60 µg/mL); concentrations of 0-400 µg/mL of the extract were used to study tissue regeneration in the zebrafish caudal fin. The extract contained several phytochemicals with antioxidant activity and exhibited DPPH scavenging activity (IC50 = 50.56 mg/mL). Embryo toxicity assays showed that a concentration of 60 μg/mL showed the highest rates of lethality regardless of exposure time. Slower embryogenesis was observed at 40 µg/mL, with non-viable embryos first detected at 50 µg/mL. Extracts showed significant differences (p 
    Matched MeSH terms: Plant Extracts/toxicity
  20. Ahda M, Jaswir I, Khatib A, Ahmed QU, Mahfudh N, Ardini YD, et al.
    Sci Rep, 2023 Oct 09;13(1):17012.
    PMID: 37813908 DOI: 10.1038/s41598-023-43251-2
    Ocimum aristatum, commonly known as O. stamineus, has been widely studied for its potential as an herbal medicine candidate. This research aims to compare the efficacy of water and 100% ethanolic extracts of O. stamineus as α-glucosidase inhibitors and antioxidants, as well as toxicity against zebrafish embryos. Based on the study findings, water extract of O. stamineus leaves exhibited superior inhibition activity against α-glucosidase, ABTS, and DPPH, with IC50 values of approximately 43.623 ± 0.039 µg/mL, 27.556 ± 0.125 µg/mL, and 95.047 ± 1.587 µg/mL, respectively. The major active compounds identified in the extract include fatty acid groups and their derivates such as linoleic acid, α-eleostearic acid, stearic acid, oleanolic acid, and corchorifatty acid F. Phenolic groups such as caffeic acid, rosmarinic acid, 3,4-Dihydroxybenzaldehyde, norfenefrine, caftaric acid, and 2-hydroxyphenylalanine and flavonoids and their derivates including 5,7-Dihydroxychromone, 5,7-Dihydroxy-2,6-dimethyl-4H-chromen-4-one, eupatorin, and others were also identified in the extract. Carboxylic acid groups and triterpenoids such as azelaic acid and asiatic acid were also present. This study found that the water extract of O. stamineus is non-toxic to zebrafish embryos and does not affect the development of zebrafish larvae at concentrations lower than 500 µg/mL. These findings highlight the potential of the water extract of O. stamineus as a valuable herbal medicine candidate, particularly for its potent α-glucosidase inhibition and antioxidant properties, and affirm its safety in zebrafish embryos at tested concentrations.
    Matched MeSH terms: Plant Extracts/toxicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links