Displaying publications 81 - 100 of 107 in total

Abstract:
Sort:
  1. Rawangkan A, Kengkla K, Kanchanasurakit S, Duangjai A, Saokaew S
    Molecules, 2021 Jun 30;26(13).
    PMID: 34209247 DOI: 10.3390/molecules26134014
    Influenza is one of the most serious respiratory viral infections worldwide. Although several studies have reported that green tea catechins (GTCs) might prevent influenza virus infection, this remains controversial. We performed a systematic review and meta-analysis of eight studies with 5,048 participants that examined the effect of GTC administration on influenza prevention. In a random-effects meta-analysis of five RCTs, 884 participants treated with GTCs showed statistically significant effects on the prevention of influenza infection compared to the control group (risk ratio (RR) 0.67, 95%CIs 0.51-0.89, P = 0.005) without evidence of heterogeneity (I2= 0%, P = 0.629). Similarly, in three cohort studies with 2,223 participants treated with GTCs, there were also statistically significant effects (RR 0.52, 95%CIs 0.35-0.77, P = 0.001) with very low evidence of heterogeneity (I2 = 3%, P = 0.358). Additionally, the overall effect in the subgroup analysis of gargling and orally ingested items (taking capsules and drinking) showed a pooled RR of 0.62 (95% CIs 0.49-0.77, P = 0.003) without heterogeneity (I2= 0%, P = 0.554). There were no obvious publication biases (Egger's test (P = 0.138) and Begg's test (P = 0.103)). Our analysis suggests that green tea consumption is effective in the prophylaxis of influenza infections. To confirm the findings before implementation, longitudinal clinical trials with specific doses of green tea consumption are warranted.
    Matched MeSH terms: Tea/chemistry*
  2. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Tea/chemistry*
  3. Benjamin MAZ, Ng SY, Saikim FH, Rusdi NA
    Molecules, 2022 Sep 30;27(19).
    PMID: 36234995 DOI: 10.3390/molecules27196458
    The therapeutic potential of bamboos has acquired global attention. Nonetheless, the biological activities of the plants are rarely considered due to limited available references in Sabah, Malaysia. Furthermore, the drying technique could significantly affect the retention and degradation of nutrients in bamboos. Consequently, the current study investigated five drying methods, namely, sun, shade, microwave, oven, and freeze-drying, of the leaves of six bamboo species, Bambusa multiplex, Bambusa tuldoides, Bambusa vulgaris, Dinochloa sublaevigata, Gigantochloa levis, and Schizostachyum brachycladum. The infused bamboo leaves extracts were analysed for their total phenolic content (TPC) and total flavonoid content (TFC). The antioxidant activities of the samples were determined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, whereas their toxicities were evaluated through the brine shrimp lethality assay (BSLA). The chemical constituents of the samples were determined using liquid chromatography−tandem mass spectrometry (LC-MS/MS). The freeze-drying method exhibited the highest phytochemical contents and antioxidant activity yield, excluding the B. vulgaris sample, in which the microwave-dried sample recorded the most antioxidant and phytochemical levels. The TPC and TFC results were within the 2.69 ± 0.01−12.59 ± 0.09 mg gallic acid equivalent (GAE)/g and 0.77 ± 0.01−2.12 ± 0.01 mg quercetin equivalent (QE)/g ranges, respectively. The DPPH and ABTS IC50 (half-maximal inhibitory concentration) were 2.92 ± 0.01−4.73 ± 0.02 and 1.89−0.01 to 3.47 ± 0.00 µg/mL, respectively, indicating high radical scavenging activities. The FRAP values differed significantly between the drying methods, within the 6.40 ± 0.12−36.65 ± 0.09 mg Trolox equivalent (TE)/g range. The phytochemical contents and antioxidant capacities exhibited a moderate correlation, revealing that the TPC and TFC were slightly responsible for the antioxidant activities. The toxicity assessment of the bamboo extracts in the current study demonstrated no toxicity against the BSLA based on the LC50 (lethal concentration 50) analysis at >1000 µg/mL. LC-MS analysis showed that alkaloid and pharmaceutical compounds influence antioxidant activities, as found in previous studies. The acquired information might aid in the development of bamboo leaves as functional food items, such as bamboo tea. They could also be investigated for their medicinal ingredients that can be used in the discovery of potential drugs.
    Matched MeSH terms: Tea
  4. Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, et al.
    Molecules, 2023 Jul 06;28(13).
    PMID: 37446908 DOI: 10.3390/molecules28135246
    Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
    Matched MeSH terms: Tea
  5. Landais E, Moskal A, Mullee A, Nicolas G, Gunter MJ, Huybrechts I, et al.
    Nutrients, 2018 Jun 05;10(6).
    PMID: 29874819 DOI: 10.3390/nu10060725
    BACKGROUND: Coffee and tea are among the most commonly consumed nonalcoholic beverages worldwide, but methodological differences in assessing intake often hamper comparisons across populations. We aimed to (i) describe coffee and tea intakes and (ii) assess their contribution to intakes of selected nutrients in adults across 10 European countries.

    METHOD: Between 1995 and 2000, a standardized 24-h dietary recall was conducted among 36,018 men and women from 27 European Prospective Investigation into Cancer and Nutrition (EPIC) study centres. Adjusted arithmetic means of intakes were estimated in grams (=volume) per day by sex and centre. Means of intake across centres were compared by sociodemographic characteristics and lifestyle factors.

    RESULTS: In women, the mean daily intake of coffee ranged from 94 g/day (~0.6 cups) in Greece to 781 g/day (~4.4 cups) in Aarhus (Denmark), and tea from 14 g/day (~0.1 cups) in Navarra (Spain) to 788 g/day (~4.3 cups) in the UK general population. Similar geographical patterns for mean daily intakes of both coffee and tea were observed in men. Current smokers as compared with those who reported never smoking tended to drink on average up to 500 g/day more coffee and tea combined, but with substantial variation across centres. Other individuals' characteristics such as educational attainment or age were less predictive. In all centres, coffee and tea contributed to less than 10% of the energy intake. The greatest contribution to total sugar intakes was observed in Southern European centres (up to ~20%).

    CONCLUSION: Coffee and tea intake and their contribution to energy and sugar intake differed greatly among European adults. Variation in consumption was mostly driven by geographical region.

    Matched MeSH terms: Tea*
  6. Shalan NA, Mustapha NM, Mohamed S
    Nutrition, 2017 Jan;33:42-51.
    PMID: 27908549 DOI: 10.1016/j.nut.2016.08.006
    OBJECTIVE: Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats.

    METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).

    RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.

    CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.

    Matched MeSH terms: Osteoblasts/drug effects; Osteoclasts/drug effects; Tea*
  7. Jacob SA, Khan TM, Lee LH
    Nutr Cancer, 2017 Apr;69(3):353-364.
    PMID: 28287319 DOI: 10.1080/01635581.2017.1285037
    This systematic review aimed to assess the clinical benefits of green tea consumption on the progression and prevention of prostate cancer (PCa). A systematic search was performed across the following databases: PubMed, Excerpta Medica dataBASE, Database of Abstracts of Reviews of Effects, Current Nursing and Allied Health Literature, Allied and Complementary Medicine Database, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials. We included studies from database inception to September 2015. Studies must report on the effect of green tea consumption on PCa. The quality of observational studies was assessed using the Newcastle-Ottawa Scale (NOS), while randomized controlled trials (RCTs) were assessed for quality using the Jadad scale. A total of 15 articles were included, with 11 reporting on the effect of green tea consumption on PCa prevention, and four reporting on the effect of green tea on treatment. Mean NOS for observational studies was 7.4 (SD±1.3), with a range from 6 to 9, while all three RCTs scored 5 on the Jadad scale. Findings demonstrate that green tea appears to be an effective chemopreventive agent, particularly in those with high-grade prostate intraepithelial neoplasia. However, evidence of efficacy in the treatment of PCa is currently lacking. Given the limitations in current studies, more well-designed RCTs should be undertaken to determine if green tea indeed has a role in the prevention and treatment of PCa.
    Matched MeSH terms: Tea/chemistry*
  8. Yong HY, Shariff ZM, Mohd Yusof BN, Rejali Z, Bindels J, Tee YYS, et al.
    Nutr Res Pract, 2019 Jun;13(3):230-239.
    PMID: 31214291 DOI: 10.4162/nrp.2019.13.3.230
    BACKGROUND/OBJECTIVES: Little is known about the dietary patterns (DPs) of women during pregnancy. The present study aimed to identify the DPs of pregnant Malaysian women and their associations with socio-demographic, obstetric, and anthropometric characteristics.
    SUBJECTS AND METHODS: This prospective cohort study included 737 participants enrolled in Seremban Cohort Study between 2013 and 2015. Food consumption was assessed using a validated 126-food item semi-quantitative food frequency questionnaire (SFFQ) at four time-points, namely, pre-pregnancy and at each trimester (first, second, and third). Principal component analysis (PCA) was used to identify DPs.
    RESULTS: Three DPs were identified at each time point and designated DP 1-3 (pre-pregnancy), DP 4-6 (first trimester), DP 7-9 (second trimester) and DP 10-12 (third trimester). DP 1, 4, and 7 appeared to be more prudent diets, characterized by higher intakes of nuts, seeds & legumes, green leafy vegetables, other vegetables, eggs, fruits, and milk & dairy products. DP 2, 5, 8, and 11 had greater loadings of condiments & spices, sugar, spreads & creamer, though DP 2 had additional sweet foods, DP 5 and 8 had additional oils & fats, and DP 11 had additional tea & coffee, respectively. DP 3 and 6 were characterized by high protein (poultry, meat, processed, dairy, eggs, and fish), sugars (mainly as beverages and sweet foods), and energy (bread, cereal & cereal products, rice, noodles & pasta) intakes. DP 9 had additional fruits. However, DP 12 had greater loadings of energy foods (bread, cereal & cereal products, rice, noodles & pasta), sugars (mainly as beverages, and sweet foods), and good protein sources (eggs, nuts, seeds & legumes). Malays were more likely to have lower adherence (LA) for DP 1 and 10 than non-Malays. DP 2, 8, and 11 were more prevalent among Malays than non-Malays. Women with a higher education were more likely to have LA for DP 10, and women with a greater waist circumference at first prenatal visit were more likely to show LA for DP 11.
    CONCLUSIONS: DPs observed in the present study were substantially different from those reported in Western populations. Information concerning associations between ethnicity, waist circumference and education with specific DPs before and throughout pregnancy could facilitate efforts to promote healthy dietary behavior and the overall health and well-being of pregnant women.
    Study name: Seremban Cohort Study (SECOST)
    Matched MeSH terms: Tea
  9. Tung SEH, Ch'ng YZ, Karnan TV, Chong PN, Zubaidah JO, Chin YS
    Nutr Res Pract, 2020 Oct;14(5):490-500.
    PMID: 33029289 DOI: 10.4162/nrp.2020.14.5.490
    BACKGROUND/OBJECTIVES: A cross-sectional study was undertaken to evaluate fluid intake and hydration status in association with cognitive function among 230 adolescents (10-14 years of age) in Petaling Perdana, Selangor, Malaysia.

    SUBJECTS/METHODS: Urine color was used to measure hydration status, while fluid intake was assessed using the 15-item beverage intake questionnaire. Cognitive function was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition.

    RESULTS: More than half of the adolescents were mildly or moderately dehydrated (59.6%) and only one-third (33.0%) were well hydrated. Among the daily fluid types, intakes of soft drinks (r = -0.180; P = 0.006), sweetened tea (r = -0.184; P = 0.005) and total sugar-sweetened beverages (SSBs) (r = -0.199; P = 0.002) were negatively correlated with cognitive function. In terms of hydration status, cognitive function score was significantly higher (F-ratio = 4.102; P = 0.018) among hydrated adolescents (100.38 ± 12.01) than in dehydrated (92.00 ± 13.63) counterparts. Hierarchical multiple linear regression analysis, after adjusting for socio-demographic factors, showed that soft drinks (β = -0.009; P < 0.05) and sweetened tea (β = -0.019; P < 0.05) negatively predicted cognitive function (ΔR2 = 0.044). When further control for sources of fluid, hydration status (β = -2.839; P < 0.05) was shown to negatively predict cognitive function (ΔR2 = 0.021). The above variables contributed 20.1% of the variance in cognitive function.

    CONCLUSIONS: The results highlight the links between fluid intake (soft drinks, sweetened tea, total SSBs) and hydration status with cognitive function in adolescents. Interventions aimed at decreasing the consumption of SSBs and increasing hydration status through healthy fluid choices, such as water, could improve cognitive performance in adolescents.

    Matched MeSH terms: Tea
  10. Chang AS, Yeong BY, Koh WP
    Nutr Rev, 2010 Apr;68(4):246-52.
    PMID: 20416020 DOI: 10.1111/j.1753-4887.2010.00283.x
    Reported here is a summary of the proceedings of the Symposium on Plant Polyphenols: Nutrition, Health and Innovations, which was cosponsored by the Southeast Asia Region branch of the International Life Sciences Institute and the Nutrition Society of Malaysia in Kuala Lumpur, Malaysia, June 22-23, 2009. The symposium provided a timely update of research regarding the protective effects of polyphenols in chronic diseases, such as cardiovascular disease and cancer, as well as the development of innovative polyphenol-containing food products with enhanced nutritive and health properties. Presentations covered polyphenols from a wide range of food sources such as tea, coffee, nuts and seeds, cocoa and chocolate, soy, and Asian fruits, vegetables, and spices. The symposium was attended by a large and diverse group of nutritionists, dietitians, researchers and allied health professionals, as well as management, research and development, and marketing personnel from the food and beverage industry. Their enthusiastic participation was a testament to the increasing awareness and interest in polyphenols in the prevention and control of chronic diseases. Presented here are some of the highlights and important information from the symposium.
    Matched MeSH terms: Tea/chemistry
  11. Ahmad N, Samiulla DS, Teh BP, Zainol M, Zolkifli NA, Muhammad A, et al.
    Pharmaceutics, 2018 Jul 11;10(3).
    PMID: 29997335 DOI: 10.3390/pharmaceutics10030090
    Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone's stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
    Matched MeSH terms: Tea
  12. Chan EW, Soh EY, Tie PP, Law YP
    Pharmacognosy Res, 2011 Oct;3(4):266-72.
    PMID: 22224051 DOI: 10.4103/0974-8490.89748
    BACKGROUND: The role of non-polymeric phenolic (NP) and polymeric tannin (PT) constituents in the antioxidant and antibacterial properties of six brands of green, black, and herbal teas of Camellia sinensis were investigated.

    MATERIALS AND METHODS: Total phenolic content (TPC) and ascorbic acid equivalent antioxidant capacity (AEAC) were assessed using the Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. Minimum inhibitory dose (MID) against Gram-positive Micrococcus luteus, Staphylococcus aureus, and Bacillus cereus, and Gram-negative. Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa was assessed using the disc-diffusion method. Teas were extracted with hot water successively three times for one hour each time. The extracts were fractionated using Sephadex LH-20 column chromatography to obtain the NP and PT constituents.

    RESULTS: Extraction yields ranged from 12 to 23%. Yields of NP fractions (70-81%) were much higher than those of PT fractions (1-11%), suggesting that the former are the major tea components. Ranking of antioxidant properties of extracts was green tea>black tea>herbal tea. For all six teas, antioxidant properties of PT fractions were significantly higher than extracts and NP fractions. Extracts and fractions of all six teas showed no activity against the three Gram-negative bacteria. Green teas inhibited all three Gram-positive bacteria with S. aureus being the least susceptible. Black and herbal teas inhibited the growth of M. luteus and B. cereus, but not S. aureus. The most potent were the PT fractions of Boh Cameron Highlands and Ho Yan Hor with MID of 0.01 and 0.03 mg/disc against M. luteus.

    CONCLUSION: Results suggested that NP constituents are major contributors to the antioxidant and antibacterial properties of teas of C. sinensis. Although PT constituents have stronger antioxidant and antibacterial properties, they constitute only a minor component of the teas.

    Matched MeSH terms: Teas, Herbal; Tea
  13. Osman WNW, Mohamed S
    Phytother Res, 2018 Oct;32(10):2078-2085.
    PMID: 29993148 DOI: 10.1002/ptr.6151
    The antifatigue properties of Morinda elliptica (ME) leaf were compared with Morinda citrifolia (MC) leaf extracts. Sixty Balb/C mice were administered (N = 10): control water, standardized green tea extract (positive control 200 mg/kg body weight [BW]), either 200 or 400 mg MC/kg BW, or either 200 or 400 mg ME/kg BW). The mice performances, biochemical, and mRNA expressions were evaluated. After 6 weeks, the weight-loaded swimming time to exhaustion in the mice consuming 400 mg MC/kg, were almost five times longer than the control mice. The gene expressions analysis suggested the extracts enhanced performance by improving lipid catabolism, carbohydrate metabolism, electron transport, antioxidant responses, energy production, and tissue glycogen stores. The MC and ME extracts enhanced stamina by reducing blood lactate and blood urea nitrogen levels, increasing liver and muscle glycogen reserve through augmenting the glucose metabolism (glucose transporter type 4 and pyruvate dehydrogenase kinase 4), lipid catabolism (acyl-Coenzyme A dehydrogenases and fatty acid translocase), antioxidant (superoxide dismutase 2) defence responses, electron transport (COX4I2), and energy production (PGC1α, NRF1, NRF2, cytochrome C electron transport, mitochondrial transcription factor A, UCP1, and UCP3) biomarkers. The MC (containing scopoletin and epicatechin) was better than ME (containing only scopoletin) or green tea (containing epicatechin and GT catechins) for alleviating fatigue.
    Matched MeSH terms: Tea
  14. Zhao Y, Hamat B, Wang T, Wang S, Pang LLL
    PLoS One, 2024;19(4):e0302005.
    PMID: 38603676 DOI: 10.1371/journal.pone.0302005
    AIMS: In order to explore new consumer demands for Chinese tea set products, propose an innovative tea set product design and evaluation method to improve the user experience and satisfaction of the produced tea sets, thereby promoting the development of the tea set market and the promotion of tea culture.

    METHODS: Firstly, grounded theory (GT) was used to analyze interview data to extract consumer demand indicators and construct a design evaluation hierarchical model. Secondly, the Analytical Hierarchy Process (AHP) was used to calculate the weights of the indicators, determine their priority of importance, and obtain several indicators that have a greater impact on the tea set design to guide innovative design practice. Lastly, the tea set design schemes were evaluated using the fuzzy comprehensive evaluation method to select the optimal design scheme and also to act as a guideline for further design optimization.

    CONCLUSION: This study explores the innovative design and evaluation method for tea set products based on GT-AHP-FCE and validates the feasibility of this approach through a practical example of tea set design inspired by "The Classic of Mountains and Seas.". It provides innovative theoretical and practical guidance for designers of subsequent tea set products and also provides a new path for the inheritance and innovation of traditional culture.

    Matched MeSH terms: Tea*
  15. Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul Rahman N
    Polymers (Basel), 2017 Nov 07;9(11).
    PMID: 30965890 DOI: 10.3390/polym9110588
    The aim was to explore the utilization of tea leaf waste fibers (TLWF) as a source for the production of cellulose nanocrystals (CNC). TLWF was first treated with alkaline, followed by bleaching before being hydrolyzed with concentrated sulfuric acid. The materials attained after each step of chemical treatments were characterized and their chemical compositions were studied. The structure analysis was examined by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). From FTIR analysis, two peaks at 1716 and 1207 cm-1-which represent C=O stretching and C⁻O stretching, respectively-disappeared in the spectra after the alkaline and bleaching treatments indicated that hemicellulose and lignin were almost entirely discarded from the fiber. The surface morphology of TLWF before and after chemical treatments was investigated by scanning electron microscopy (SEM) while the dimension of CNC was determined by transmission electron microscopy (TEM). The extraction of CNC increased the surface roughness and the crystallinity index of fiber from 41.5% to 83.1%. Morphological characterization from TEM revealed the appearance of needle-like shaped CNCs with average diameter of 7.97 nm. The promising results from all the analyses justify TLWF as a principal source of natural materials which can produce CNC.
    Matched MeSH terms: Tea
  16. Jin Liang, Pradeep Puligundla, Sanghoon Ko, Xiao-Chun Wan
    Sains Malaysiana, 2014;43:1685-1692.
    Selenium (Se) has been recognized as an essential nutrient for humans. Plant foods are the predominant source of selenium and majority of dietary selenium is absorbed depending on the type of food consumed. Nowadays, green tea is becoming increasingly popular for its prominent health benefits, including the ability to supplement selenium in organically bound, natural food form. The selenium content of Se-enriched green tea is influenced by the selenium level of local soils in which it is grown. However, selenium content of plants can also be improved by artificial fortification methods. In this review, the chemical speciation and biological functions of selenium, fortification methods, biological activities and nutraceutical applications of Se-enriched green tea are discussed. This review provides insights into the current research and the importance of Se-enriched green tea in the enrichment of human nutrition and health.
    Matched MeSH terms: Tea
  17. Ng TP
    Sains Malaysiana, 2016;45:1351-1355.
    Dementia poses a major global burden of care to society and health systems in ageing populations. The majority (over 60%) of persons with dementia in the world are found in Asia and developing countries with rapid rates of population ageing. Improving and maintaining the cognitive health of older persons is vital to national strategies for dementia prevention. Increasing numbers of population-based ageing cohort studies in the past decade have provided a better understanding of the factors that contribute to cognitive function and decline in old age. The roles of major demographic, psychosocial, lifestyle, behavioral and cardiovascular risk factors contributing to cognitive health were discussed using examples from the Singapore Longitudinal Ageing Studies. They include socio-demographic factors, particularly education and marital status, leisure time activity such as physical activity, social engagement and mental activities, psychological factors such as depression, cardiovascular and metabolic risk factors: obesity, diabetes, hypertension and dyslipidemia, and the metabolic syndrome, under-nutrition, low albumin, low hemoglobin, nutritional factors such as blood folate, B12 and homocysteine, omega-3 poly-unsaturated fatty acids, tea drinking and curcumin-rich turmeric in curry meals. These factors are found to be associated variously with cognitive functions (memory and learning, language, visuospatial, attention and information processing speed), rates of cognitive impairment and cognitive decline, or increased risk of developing MCI and progression to dementia.
    Matched MeSH terms: Tea
  18. Brza MA, Aziz SB, Anuar H, Ali F, Dannoun EMA, Mohammed SJ, et al.
    Sci Rep, 2020 Oct 22;10(1):18108.
    PMID: 33093604 DOI: 10.1038/s41598-020-75138-x
    In the present study black tea extract (BTE) solution which is familiar for drinking was used to prepare cerium metal-complexes (Ce(III)-complex). The prepared Ce(III)-complex was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-Vis spectroscopy. The results indicate that BTE solution is a novel green coordination chemistry approach for the synthesis of metal complexes. The outcomes signify that coordination occurs between cerium cations and polyphenols. The synthesis of metal-complexes with superior absorption performance in the visible region is a challenge for optoelectronic device applications. The suspended Ce(III)-complex in distilled water was mixed with poly (vinyl alcohol) (PVA) polymer to fabricate PVA/ Ce(III)-complex composites with controlled optical properties. The PVA/Ce(III)-complexes composite films were characterized by FTIR, XRD, and UV-Vis spectroscopy. The XRD findings confirms the amorphous structure for the synthesized Ce(III)-complexes. The addition of Ce(III)-complex into the PVA host polymer led to the growth of polymer composites with controllable small optical band gaps. It is shown by the FTIR spectra of the composite films that the functional groups of the host PVA have a vigorous interaction with the Ce(III)-complex. The XRD deconvolution on PVA composites reveals the amorphous phase enlargement with increasing Ce(III)-complex concentration. It is indicated in the atomic force microscopy (AFM) that the surface roughness in the doped PVA films increases with the increase of the Ce(III)-complex. There is a decrease in absorption edge from 5.7 to 1.7 eV. It becomes possible to recognize the type of electron transition by studying both the Tauc's model and optical dielectric loss (ɛi) parameter.
    Matched MeSH terms: Tea
  19. Ong P, Chen S, Tsai CY, Chuang YK
    PMID: 33744842 DOI: 10.1016/j.saa.2021.119657
    In this study, near-infrared (NIR) spectroscopy was exploited for non-destructive determination of theanine content of oolong tea. The NIR spectral data (400-2500 nm) were correlated with the theanine level of 161 tea samples using partial least squares regression (PLSR) with different wavelengths selection methods, including the regression coefficient-based selection, uninformative variable elimination, variable importance in projection, selectivity ratio and flower pollination algorithm (FPA). The potential of using the FPA to select the discriminative wavelengths for PLSR was examined for the first time. The analysis showed that the PLSR with FPA method achieved better predictive results than the PLSR with full spectrum (PLSR-full). The developed simplified model using on FPA based on 12 latent variables and 89 selected wavelengths produced R-squared (R2) value and root mean squared error (RMSE) of 0.9542, 0.8794 and 0.2045, 0.3219 for calibration and prediction, respectively. For PLSR-full, the R2 values of 0.9068, 0.8412 and RMSEs of 0.2916, 0.3693, were achieved for calibration and prediction. Also, the optimized model using FPA outperformed other wavelengths selection methods considered in this study. The obtained results indicated the feasibility of FPA to improve the predictability of the PLSR and reduce the model complexity. The nonlinear regression models of support vector machine regression and Gaussian process regression (GPR) were further utilized to evaluate the superiority of using the FPA in the wavelength selection. The results demonstrated that utilizing the wavelength selection method of FPA and nonlinear regression model of GPR could improve the predictive performance.
    Matched MeSH terms: Tea
  20. Ahmad Fuzi SF, Koller D, Bruggraber S, Pereira DI, Dainty JR, Mushtaq S
    Am J Clin Nutr, 2017 Dec;106(6):1413-1421.
    PMID: 29046302 DOI: 10.3945/ajcn.117.161364
    Background: Tea has been shown to be a potent inhibitor of nonheme iron absorption, but it remains unclear whether the timing of tea consumption relative to a meal influences iron bioavailability.Objective: The aim of the study was to investigate the effect of a 1-h time interval of tea consumption on nonheme iron absorption in an iron-containing meal in a cohort of iron-replete, nonanemic female subjects with the use of a stable isotope (57Fe).Design: Twelve women (mean ± SD age: 24.8 ± 6.9 y) were administered a standardized porridge meal extrinsically labeled with 4 mg 57Fe as FeSO4 on 3 separate occasions, with a 14-d time interval between each test meal (TM). The TM was administered with water (TM-1), with tea administered simultaneously (TM-2), and with tea administered 1 h postmeal (TM-3). Fasted venous blood samples were collected for iron isotopic analysis and measurement of iron status biomarkers. Fractional iron absorption was estimated by the erythrocyte iron incorporation method.Results: Iron absorption was 5.7% ± 8.5% (TM-1), 3.6% ± 4.2% (TM-2), and 5.7% ± 5.4% (TM-3). Mean fractional iron absorption was found to be significantly higher (2.2%) when tea was administered 1 h postmeal (TM-3) than when tea was administered simultaneously with the meal (TM-2) (P = 0.046). An ∼50% reduction in the inhibitory effect of tea (relative to water) was observed, from 37.2% (TM-2) to 18.1% (TM-3).Conclusions: This study shows that tea consumed simultaneously with an iron-containing porridge meal leads to decreased nonheme iron absorption and that a 1-h time interval between a meal and tea consumption attenuates the inhibitory effect, resulting in increased nonheme iron absorption. These findings are not only important in relation to the management of iron deficiency but should also inform dietary advice, especially that given to those at risk of deficiency. This trial was registered at clinicaltrials.gov as NCT02365103.
    Matched MeSH terms: Tea/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links