Displaying publications 81 - 100 of 396 in total

Abstract:
Sort:
  1. Chew LL, Chong VC, Wong RCS, Lehette P, Ng CC, Loh KH
    Mar Pollut Bull, 2015 Dec 15;101(1):69-84.
    PMID: 26581817 DOI: 10.1016/j.marpolbul.2015.11.022
    Zooplankton samples collected before (1985-86) and after (2013-14) the establishment of Kapar power station (KPS) were examined to test the hypothesis that increased sea surface temperature (SST) and other water quality changes have altered the zooplankton community structure. Elevated SST and reduced pH were detected between before and after impact pairs, with the greatest impact at the station closest to KPS. Present PAHs and heavy metal concentrations are unlikely causal factors. Water parameter changes did not affect diversity but community structure of the zooplankton. Tolerant small crustaceans, salps and larvaceans likely benefited from elevated temperature, reduced pH and shift to a more significant microbial loop exacerbated by eutrophication, while large crustaceans were more vulnerable to such changes. It is predicted that any further rise in SST will remove more large-bodied crustacean zooplankton, the preferred food for fish larvae and other meroplankton, with grave consequences to fishery production.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  2. Chong MF, Lee KP, Chieng HJ, Syazwani Binti Ramli II
    Water Res, 2009 Jul;43(13):3326-34.
    PMID: 19487007 DOI: 10.1016/j.watres.2009.04.044
    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Chong SS, Aziz AR, Harun SW, Arof H
    Sensors (Basel), 2014;14(9):15836-48.
    PMID: 25166498 DOI: 10.3390/s140915836
    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10(-4) and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Choong CE, Ibrahim S, Basirun WJ
    J Colloid Interface Sci, 2019 Apr 01;541:12-17.
    PMID: 30682589 DOI: 10.1016/j.jcis.2019.01.071
    The present study reports the removal of Bisphenol A (BPA) and Ibuprofen (IBP) using adsorbents prepared from batik sludge. The calcite sludge-aluminum hydroxide (CAl) adsorbent was prepared by calcination and followed by aluminum hydroxide impregnation. The batik sludge and prepared adsorbents were characterized by FESEM, TGA, XRD, FTIR and BET techniques. The maximum adsorption capacity, adsorption time, different initial solution pH, ionic strength and regeneration study of the adsorbents were also investigated. Furthermore, the sorption behavior of the pollutants were studied by the Langmuir and Freundlich isotherms. The deposition of Al(OH)3 enhanced the BPA and IBP adsorption capacity on the CAl surface. The maximum removal capacity of BPA and Ibuprofen were 83.53 mg g-1 and 34.96 mg g-1 for the CAl adsorbent. In addition, the kinetic data for BPA and IBP were fitted to the pseudo first order, pseudo second order, Elovich, parabolic diffusion and power function equations to understand the sorption behavior. The adsorption behavior of BPA and IBP was mainly chemisorption. This study shows that CAl is a promising adsorbent for the removal of BPA and IBP.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  5. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  6. Chow MF, Yusop Z, Shirazi SM
    Environ Monit Assess, 2013 Oct;185(10):8321-31.
    PMID: 23591675 DOI: 10.1007/s10661-013-3175-6
    Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  7. Chui MQ, Thang LY, See HH
    J Chromatogr A, 2017 Jan 20;1481:145-151.
    PMID: 28017568 DOI: 10.1016/j.chroma.2016.12.042
    A new approach based on the integration of the free liquid membrane (FLM) into electrokinetic supercharging (EKS) was demonstrated to be a new powerful tool used in order to enhance online preconcentration efficiency in capillary electrophoresis (CE). A small plug of water immiscible organic solvent was used as a membrane interface during the electrokinetic sample injection step in EKS in order to significantly enhance the analyte stacking efficiency. The new online preconcentration strategy was evaluated for the determination of paraquat and diquat present in the environmental water samples. The optimised FLM-EKS conditions employed were as follows: hydrodynamic injection (HI) of 20mM potassium chloride as leading electrolyte at 50mbar for 75s (3% of the total capillary volume) followed by the HI of tris(2-ethylhexyl) phosphate (TEHP) as FLM at a 1mm length (0.1% of the capillary volume). The sample was injected at 10kV for 360s, followed by the HI of 20mM cetyl trimethylammonium bromide (CTAB) as terminating electrolyte at 50mbar for 50s (2% of the total capillary volume). The separation was performed in 12mM ammonium acetate and 30mM NaCl containing 20% MeOH at +25kV with UV detection at 205nm. Under optimised conditions, the sensitivity was enhanced between 1500- and 1866-fold when compared with the typical HI at 50mbar for 50s. The detection limit of the method for paraquat and diquat was 0.15-0.20ng/mL, with RSDs below 5.5%. Relative recoveries in spiked river water were in the range of 95.4-97.5%. A comparison was also made between the proposed approach with sole preconcentration of the field-enhanced sample injection (FASI) and EKS in the absence of the FLM.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  8. Cuong DT, Karuppiah S, Obbard JP
    Environ Monit Assess, 2008 Mar;138(1-3):255-72.
    PMID: 17562200
    Concentrations of heavy metals were determined in the water column (including the sea-surface microlayer, subsurface, mid-depth and bottom water) and sediments from Singapore's coastal environment. The concentration ranges for As, Cd, Cr, Cu, Ni, Pb and Zn in the seawater dissolved phase (DP) were 0.34-2.04, 0.013-0.109, 0.07-0.35, 0.23-1.16, 0.28-0.78, 0.009-0.062 and 0.97-3.66 microg L(-1) respectively. The ranges for Cd, Cr, Cu, Ni, Pb and Zn in the suspended particulate matter (SPM) were 0.16-0.73, 6.72-53.93, 12.87-118.29, 4.34-60.71, 1.10-6.08 and 43.09-370.49 microg g(-1), respectively. Heavy metal concentrations in sediments ranged between 0.054-0.217, 37.48-50.52, 6.30-21.01, 13.27-26.59, 24.14-37.28 and 48.20-62.36 microg g(-1) for Cd, Cr, Cu, Ni, Pb and Zn, respectively. The lowest concentrations of metals in the DP and SPM were most frequently found in the subsurface water while the highest concentrations were mostly observed in the SML and bottom water. Overall, heavy metals in both the dissolved and particulate fractions have depth profiles that show a decreasing trend of concentrations from the subsurface to the bottom water, indicating that the prevalence of metals is linked to the marine biological cycle. In comparison to data from Greece, Malaysia and USA, the levels of metals in the DP are considered to be low in Singapore. Higher concentrations of particulate metals were reported for the Northern Adriatic Sea and the Rhine/Meuse estuary in the Netherlands compared to values reported in this study. The marine sediments in Singapore are not heavily contaminated when compared to metal levels in marine sediments from other countries such as Thailand, Japan, Korea, Spain and China.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  9. Dadrasnia A, Azirun MS, Ismail SB
    BMC Biotechnol, 2017 Nov 28;17(1):85.
    PMID: 29179747 DOI: 10.1186/s12896-017-0395-9
    BACKGROUND: When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH.

    RESULTS: Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH3-N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI.

    CONCLUSIONS: Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH3-N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.

    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  10. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  11. Dalu T, Wasserman RJ, Wu Q, Froneman WP, Weyl OLF
    Environ Sci Pollut Res Int, 2018 Jan;25(3):2842-2852.
    PMID: 29143261 DOI: 10.1007/s11356-017-0728-1
    The effect of metals on environmental health is well documented and monitoring these and other pollutants is considered an important part of environmental management. Developing countries are yet to fully appreciate the direct impacts of pollution on aquatic ecosystems and as such, information on pollution dynamics is scant. Here, we assessed the temporal and spatial dynamics of stream sediment metal and nutrient concentrations using contaminant indices (e.g. enrichment factors, pollution load and toxic risk indices) in an arid temperate environment over the wet and dry seasons. The mean sediment nutrient, organic matter and metal concentration were highest during the dry season, with high values being observed for the urban environment. Sediment contaminant assessment scores indicated that during the wet season, the sediment quality was acceptable, but not so during the dry season. The dry season had low to moderate levels of enrichment for metals B, Cu, Cr, Fe, Mg, K and Zn. Overall, applying the sediment pollution load index highlighted poor quality river sediment along the length of the river. Toxic risk index indicated that most sites posed no toxic risk. The results of this study highlighted that river discharge plays a major role in structuring temporal differences in sediment quality. It was also evident that infrastructure degradation was likely contributing to the observed state of the river quality. The study contributes to our understanding of pollution dynamics in arid temperate landscapes where vast temporal differences in base flow characterise the riverscape. Such information is further useful for contrasting sediment pollution dynamics in aquatic environments with other climatic regions.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  12. Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, et al.
    Chemosphere, 2010 Jan;78(3):286-93.
    PMID: 19931116 DOI: 10.1016/j.chemosphere.2009.10.048
    The effects of treatment processes on estrogenicity were evaluated by examining estradiol equivalent (EEQ) concentrations in influents and effluents of sewage treatment plants (STPs) located along Yeongsan and Seomjin rivers in Korea. The occurrence and distribution of estrogenic chemicals were also estimated for surface water in Korea and compared with seven other Asian countries including Laos, Cambodia, Vietnam, China, Indonesia, Thailand and Malaysia. Target compounds were nonylphenol (NP), octylphenol (OP), bisphenol A (BPA), estrone (E1), 17beta-estradiol (E2), 17alpha-ethynylestradiol (EE2) and genistein (Gen). Water samples were pretreated and analyzed by liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS). The results showed that the treatment processes of Korean STPs were sufficient to reduce the estrogenic activity of municipal wastewater. The concentrations of phenolic xenoestrogens (i.e., NP, OP and BPA) in samples of Yeongsan and Seomjin rivers were smaller than those reported by previous studies in Korea. In most samples taken from the seven Asian countries, the presence of E2 and EE2 was a major contributor toward estrogenic activity. The EEQ concentrations in surface water samples of the seven Asian countries were at a higher level in comparison to that reported in European countries, America and Japan. However, further studies with more sampling frequencies and sampling areas should be carried out for better evaluation of the occurrence and distribution of estrogenic compounds in these Asian countries.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  13. ELTurk M, Abdullah R, Rozainah MZ, Abu Bakar NK
    Mar Pollut Bull, 2018 Nov;136:1-9.
    PMID: 30509789 DOI: 10.1016/j.marpolbul.2018.08.063
    This study was carried out to evaluate the distribution, enrichment and ecological risk of heavy metals (arsenic (As), zinc (Zn), manganese (Mn), copper (Cu) and lead (Pb)) concentration in Kuala Selangor estuary at the Kuala Selangor Nature Park. The results suggested that As and Pb in sediment were as high as the background value, suggesting the presence of anthropogenic contamination. The risk assessment of sediment Igeo, CD, and PERI, on the other hand, showed low risk of heavy metals in Kuala Selangor estuary. Meanwhile, risk assessment code (RAC) results showed that Mn, As and Zn presented medium to high level of environmental risk. The translocation factor and bioaccumulation factors of heavy metal concentration by mangrove vegetation showed a variety of trends, which indicates the different partitioning and uptake ability of heavy metal in the tissues of different mangrove species. Therefore, underscores the importance of preserving the high diversity of mangroves at securing the health and productivity of the coastal region. These results may play a critical role in facilitating decision makers in managing the sustainability of mangrove forests.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Ebrahimpour M, Mushrifah I
    Environ Monit Assess, 2008 Jun;141(1-3):297-307.
    PMID: 17891467
    The purpose of this paper are to determine the concentration of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in water and sediment; and to investigate the effect of sediment pH and sediment organic matter on concentration of cadmium, copper and lead in sediment at oxidation fraction. For this purpose the concentration of heavy metals were measured in water and sediments at 15 sites from Tasik Chini, Peninsular Malaysia. The sequential extraction procedure used in this study was based on defined fractions: exchangeable, acid reduction, oxidation, and residual. The concentration of heavy metals in residual fraction was higher than the other fractions. Among the non-residual fractions, the concentration of heavy metals in organic matter fraction was much higher than other fractions collected from all sampling sites. The pH of the sediment in all sites was acidic. The mean pH ranges from 4.8 to 5.5 with the higher value observed at site 15. Results of organic matter analysis showed that the percentage of organic matter present in sediment samples varies throughout the lake and all sites of sediments were relatively rich in organic matter ranging from 13.0% to 34.2%. The highest mean percentage of organic matter was measured at sampling site 15, with value of 31.78%.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  15. Elias MS, Ibrahim S, Samuding K, Rahman SA, Hashim A
    Mar Pollut Bull, 2018 Dec;137:646-655.
    PMID: 30503479 DOI: 10.1016/j.marpolbul.2018.11.006
    In this study, concentrations of heavy metals, rare earth elements (REEs), Uranium (U) and Thorium (Th) of the actinide group were determined from Linggi estuary sediment samples by neutron activation analysis (NAA) and inductive coupled plasma - mass spectrometry techniques. The geo-accumulation (Igeo) and ecological risk index (Ri) values were calculated to identify the quality status of Linggi estuary sediments. Results indicated Linggi estuary was polluted by arsenic (As), lead (Pb) and antimony (Sb). REEs, U and Th showed significant increase of concentration in Linggi estuary sediments. Ri of Linggi estuary was categorised as low to considerable ecological risk, which indicates no significant to moderate effect on the majority of the sediment-dwelling organisms. Correlation matrix and principal component analysis assessed pollution sources to be both natural and anthropogenic.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Elias MS, Ibrahim S, Samuding K, Rahman SA, Wo YM, Daung JAD
    Environ Monit Assess, 2018 Mar 29;190(4):257.
    PMID: 29600468 DOI: 10.1007/s10661-018-6632-4
    Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  17. Emenike CU, Fauziah SH, Agamuthu P
    Waste Manag Res, 2012 Sep;30(9):888-97.
    PMID: 22593235 DOI: 10.1177/0734242X12443585
    Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  18. Erabee IK, Ahsan A, Jose B, Arunkumar T, Sathyamurthy R, Idrus S, et al.
    PMID: 28471297 DOI: 10.1080/10934529.2017.1303309
    This study investigated the effects of different parameters on the removal efficiencies of organic and inorganic pollutants in landfill leachate treatment by electrolysis. Different parameters were considered such as the electric potential (e.g., 24, 40 and 60 V), hydraulic retention time (HRT) (e.g., 40, 60, 80, 100 and 120 min), sodium chloride (NaCl) concentration (e.g., 1, 3, 5 and 7%), pH (e.g., 3, 7 and 9), electrodes materials [e.g., aluminum (Al) and iron (Fe)] and distance between electrodes (e.g., 1, 2 and 3 cm). The best operational condition of electrolysis was then recommended. The electric potential of 60 V with HRT of 120 min at 5% of NaCl solution using Al as anode and Fe as cathode (kept at a distance of 3 cm) was the most efficient condition which increased the removal efficiencies of various parameters such as turbidity, salinity, total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals (e.g., Zn and Mn). The higher removal percentages of many parameters, especially COD (94%) and Mn (93%) indicated that the electrolysis is an efficient technique for multi-pollutants (e.g., organic, inorganic and heavy metals) removal from the landfill leachate.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  19. Fry B, Carter JF, Tinggi U, Arman A, Kamal M, Metian M, et al.
    Isotopes Environ Health Stud, 2016 Dec;52(6):619-32.
    PMID: 26982881 DOI: 10.1080/10256016.2016.1149481
    To assess coastal ecosystem status and pollution baselines, prawns were collected from the commercial catches of eight Asia-Pacific countries (Australia, Bangladesh, Indonesia, Myanmar, Philippines, Pakistan, Sri Lanka and Thailand). Samples collected from 21 sites along regional coastlines were analysed for trace metal and stable isotopic compositions of H, C, N, O and S. A combination of simple averaging and multivariate analyses was used to evaluate the data. Sites could be assigned to easily recognise polluted and unpolluted groups based on the prawn results. Some filter-feeding clams were also collected and analysed together with the benthic-feeding prawns, and the prawns generally had lower trace metal burdens. Climate change effects were not strongly evident at this time, but altered ocean circulation and watershed run-off patterns accompanying future climate change are expected to change chemical patterns recorded by prawns along these and other coastlines. Stable isotopes, especially (15)N, can help to distinguish between relatively polluted and unpolluted sites.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links