Displaying publications 81 - 100 of 149 in total

Abstract:
Sort:
  1. Kodaira S, Konishi T, Kobayashi A, Maeda T, Ahmad TA, Yang G, et al.
    J Radiat Res, 2015 Mar;56(2):360-5.
    PMID: 25324538 DOI: 10.1093/jrr/rru091
    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.
    Matched MeSH terms: DNA Damage/genetics*
  2. Ong ALC, Ramasamy TS
    Ageing Res Rev, 2018 May;43:64-80.
    PMID: 29476819 DOI: 10.1016/j.arr.2018.02.004
    Regulatory role of Sirtuin 1 (SIRT1), one of the most extensively studied members of its kind in histone deacetylase family in governing multiple cellular fates, is predominantly linked to p53 activity. SIRT1 deacetylates p53 in a NAD+-dependent manner to inhibit transcription activity of p53, in turn modulate pathways that are implicated in regulation of tissue homoeostasis and many disease states. In this review, we discuss the role of SIRT1-p53 pathway and its regulatory axis in the cellular events which are implicated in cellular aging, cancer and reprogramming. It is noteworthy that these cellular events share few common regulatory pathways, including SIRT1-p53-LDHA-Myc, miR-34a,-Let7 regulatory network, which forms a positive feedback loop that controls cell cycle, metabolism, proliferation, differentiation, epigenetics and many others. In the context of aging, SIRT1 expression is reduced as a protective mechanism against oncogenesis and for maintenance of tissue homeostasis. Interestingly, its activation in aged cells is evidenced in response to DNA damage to protect the cells from p53-dependent apoptosis or senescence, predispose these cells to neoplastic transformation. Importantly, the dual roles of SIRT1-p53 axis in aging and tumourigenesis, either as tumour suppressor or tumour promoter are determined by SIRT1 localisation and type of cells. Conceptualising the distinct similarity between tumorigenesis and cellular reprogramming, this review provides a perspective discussion on involvement of SIRT1 in improving efficiency in the induction and maintenance of pluripotent state. Further research in understanding the role of SIRT1-p53 pathway and their associated regulators and strategies to manipulate this regulatory axis very likely foster the development of therapeutics and strategies for treating cancer and aging-associated degenerative diseases.
    Matched MeSH terms: DNA Damage/immunology
  3. Vasantharaja R, Stanley Abraham L, Gopinath V, Hariharan D, Smita KM
    Int J Biol Macromol, 2019 Mar 01;124:50-59.
    PMID: 30445094 DOI: 10.1016/j.ijbiomac.2018.11.104
    In this present study, isolation, characterization and protective effect of sulfated polysaccharide (SP) isolated from the brown algae Padina gymnospora was investigated. SP was isolated and characterized through FT-IR, 1H NMR, TGA, GC-MS and CHN analysis. The molecular weight of SP was found to be 16 kDa. The isolated SP contains 29.4 ± 0.35% of sulfate, 27 ± 0.11% of fucose, 0.05 ± 0.12% of protein, respectively. Furthermore, SP exhibits its excellent radical scavenging effects were evaluated by DPPH, ABTS radical scavenging and reducing power assays. Moreover, pretreatment with SP significantly mitigates H2O2 induced cytotoxicity in L-929 cells in a dose dependent manner. Furthermore, SP pretreatment ameliorates oxidative stress induced apoptosis and DNA damage, alleviates the generation of intracellular reactive oxygen species (ROS) and restores mitochondrial membrane potential (MMP) in L-929 cells through its antioxidant potential. Together, these results suggest that SP can be exploited as a natural antioxidant in the food and pharmaceutical industries.
    Matched MeSH terms: DNA Damage/drug effects
  4. Sutris JM, How V, Sumeri SA, Muhammad M, Sardi D, Mohd Mokhtar MT, et al.
    Int J Occup Environ Med, 2016 Jan;7(1):42-51.
    PMID: 26772597 DOI: 10.15171/ijoem.2016.705
    BACKGROUND: Agriculture is an important sector for the Malaysian economy. The use of pesticides in agriculture is crucial due to its function in keeping the crops from harmful insects. Children living near agricultural fields are at risk of pesticide poisoning.

    OBJECTIVE: To evaluate the genotoxic risk among children who exposed to pesticides and measure DNA damage due to pesticides exposure.

    METHODS: In a cross-sectional study 180 Orang Asli Mah Meri children aged between 7 and 12 years were studied. They were all living in an agricultural island in Kuala Langat, Selangor, Malaysia. The data for this study were collected via modified validated questionnaire and food frequency questionnaire, which consisted of 131 food items. 6 urinary organophosphate metabolites were used as biomarkers for pesticides exposure. For genotoxic risk or genetic damage assessment, the level of DNA damage from exfoliated buccal mucosa cells was measured using the comet assay electrophoresis method.

    RESULTS: Out of 180 respondents, 84 (46.7%) showed positive traces of organophosphate metabolites in their urine. Children with detectable urinary pesticide had a longer tail length (median 43.5; IQR 30.9 to 68.1 μm) than those with undetectable urinary pesticides (median 24.7; IQR 9.5 to 48.1 μm). There was a significant association between the extent of DNA damage and the children's age, length of residence in the area, pesticides detection, and frequency of apple consumption.

    CONCLUSION: The organophosphate genotoxicity among children is associated with the amount of exposure (detectability of urinary pesticide) and length of residence in (exposure) the study area.

    Matched MeSH terms: DNA Damage*
  5. Ernst B, Setayesh T, Nersesyan A, Kundi M, Fenech M, Bolognesi C, et al.
    Sci Rep, 2021 Nov 26;11(1):23014.
    PMID: 34836993 DOI: 10.1038/s41598-021-01995-9
    Consumption of very hot beverages and foods increases the incidence of oral and esophageal cancer but the mechanisms are not known and the critical temperature is not well defined. We realized a study with exfoliated cells from the oral cavity of individuals (n = 73) that live in an area in Iran which has the highest incidence of EC worldwide. Consumption of beverages at very high temperatures is a characteristic feature of this population. We analyzed biomarkers which are (i) indicative for genetic instability (micronuclei that are formed as a consequence of chromosomal damage, nuclear buds which are a consequence of gene amplifications and binucleated cells which reflect mitotic disturbances), (ii) markers that reflect cytotoxic effects (condensed chromatin, karyorrhectic, karyolitic and pyknotic cells), (iii) furthermore, we determined the number of basal cells which is indicative for the regenerative capacity of the buccal mucosa. The impact of the drinking temperature on the frequencies of these parameters was monitored with thermometers. We found no evidence for induction of genetic damage but an increase of the cytotoxic effects with the temperature was evident. This effect was paralleled by an increase of the cell division rate of the mucosa which was observed when the temperature exceeded 60 °C. Our findings indicate that cancer in the upper digestive tract in drinkers of very hot beverages is not caused by damage of the genetic material but by an increase of the cell division rate as a consequence of cytotoxic effects which take place at temperatures over 60 °C. It is known from earlier experiments with rodents that increased cell divisions lead to tumor promotion in the esophagus. Our findings provide a mechanistic explanation and indicate that increased cancer risks can be expected when the drinking temperature of beverages exceeds 60 °C.
    Matched MeSH terms: DNA Damage*
  6. Al-Shami SA, Rawi CS, Ahmad AH, Nor SA
    Toxicol Ind Health, 2012 Sep;28(8):734-9.
    PMID: 22025505 DOI: 10.1177/0748233711422729
    The genotoxic effects of increasing concentrations (below lethal concentration [LC₅₀]) of cadmium ([Cd] 0.1, 1 and 10 mg/L), copper ([Cu] 0.2, 2 and 20 mg/L) and zinc ([Zn] 0.5, 5 and 50 mg/L) on Chironomus kiiensis were evaluated using alkaline comet assay after exposure for 24 h. Both the tail moment and the olive tail moment showed significant differences between the control and different concentrations of Cd, Cu and Zn (Kruskal-Wallis, p < 0.05). The highest concentration of Cd was associated with higher DNA damage to C. kiiensis larvae compared with Cu and Zn. The potential genotoxicity of these metals to C. kiiensis was Cd > Cu > Zn.
    Matched MeSH terms: DNA Damage
  7. Lim SW, Ting KN, Bradshaw TD, Zeenathul NA, Wiart C, Khoo TJ, et al.
    J Ethnopharmacol, 2011 Nov 18;138(2):616-23.
    PMID: 22008878 DOI: 10.1016/j.jep.2011.10.005
    The seeds of Acalypha wilkesiana have been used empirically by traditional healers in Southwest Nigeria together with other plants as a powder mixture to treat patients with breast tumours and inflammation.
    Matched MeSH terms: DNA Damage
  8. Majid AM, Smythe G, Denny WA, Wakelin LP
    Mol. Pharmacol., 2007 Apr;71(4):1165-78.
    PMID: 17251328
    Nitrogen mustard alkylating agents are important cancer drugs. Much interest has been focused on redirecting their covalent adducts from the N7 atoms of guanine in the major groove of DNA to the N3 atoms of adenine in the minor groove by attaching mustard groups to AT-selective minor groove binding ligands. Here we describe the use of electrospray ionization and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry to study the structure of the DNA complexes of two minor groove binding polybenzamide mustards, alkamin and alkamini; the former is a bis-half-mustard in which reactive groups are disposed at each end of the ligand, and the latter is its monofunctional analog. Alkamin is potently cytotoxic and active in experimental mouse tumor models, whereas alkamini is not. We have studied their interaction with the DNA dodecamer d(CGCGAATTCGCG)(2), designated A2T2, and we provide a detailed analysis of the observed DNA-ligand adduct ions and their fragmentation products. We find that alkamini alkylates A2T2 at guanine G4 and adenines A5 and A6 in a manner consistent with covalent attack on purine N3 atoms from the minor groove of the AT tract. Alkamin also forms monofunctional adducts at G4 and both adenines in which the second mustard arm is hydrolyzed but, in addition, forms a variety of interstrand cross-links between adenines A5/A6 and A5'/A6', an interstrand cross-link between G4 and A6', and an intrastrand cross-link between G4 and A6. We conclude that the marked cytotoxicity of alkamin and its experimental antitumor activity could be the consequence of its ability to cross-link cellular DNA at AT tract sequences.
    Matched MeSH terms: DNA Damage
  9. Karim Z, Khan MJ, Maskat MY, Adnan R
    Prep Biochem Biotechnol, 2016 May 18;46(4):321-7.
    PMID: 25830286 DOI: 10.1080/10826068.2015.1031389
    This study aimed to work out a simple and high-yield procedure for the immobilization of horseradish peroxidase on silver nanoparticle. Ultraviolet-visible (UV-vis) and Fourier-transform infrared spectroscopy and transmission electron microscopy were used to characterize silver nanoparticles. Horseradish peroxidase was immobilized on β-cyclodextrin-capped silver nanoparticles via glutaraldehyde cross-linking. Single-cell gel electrophoresis (Comet assay) was also performed to confirm the genotoxicity of silver nanoparticles. To decrease toxicity, silver nanoparticles were capped with β-cyclodextrin. A comparative stability study of soluble and immobilized enzyme preparations was investigated against pH, temperature, and chaotropic agent, urea. The results showed that the cross-linked peroxidase was significantly more stable as compared to the soluble counterpart. The immobilized enzyme exhibited stable enzyme activities after repeated uses.
    Matched MeSH terms: DNA Damage
  10. Chan KL, Sugiyama H, Saito I, Hara M
    Phytochemistry, 1995 Nov;40(5):1373-4.
    PMID: 8534399
    The kapurimycin A3-guanine adduct was formed by alkylation of the antitumour antibiotic with d(CGCG)2. The site of alkylation of the guanine was confirmed by comparative NMR studies with N-7-methyl-guanine in DMSO-d6.
    Matched MeSH terms: DNA Damage
  11. Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, et al.
    J Control Release, 2020 12 10;328:873-894.
    PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053
    Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
    Matched MeSH terms: DNA Damage
  12. Ooi TC, Yaacob M, Rajab NF, Shahar S, Sharif R
    Saudi J Biol Sci, 2021 May;28(5):2987-2994.
    PMID: 34025176 DOI: 10.1016/j.sjbs.2021.02.039
    Oxidative stress, DNA damage, and unresolved inflammation are the predisposing factors of many chronic and degenerative diseases, including cancer. Stingless bee honey (SBH) is recognized to have high medicinal value by traditional medicine practitioners and has been used to treat various illnesses traditionally. This study aimed to determine the antioxidant, anti-inflammatory, and genoprotective effects of SBH by using in vitro cell culture models. The sugar content, total phenolic content, radical scavenging activity, and ferric reducing antioxidant power (FRAP) of SBH were determined in this study. Then, the protective effect of SBH against hydrogen peroxide (H2O2)-induced cell death and DNA damage was studied by using WIL2-NS human lymphoblastoid cell line, while the lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages cell line was used to study the anti-inflammatory effects of SBH. Results from this present study showed that the major sugar contents of SBH were fructose (19.39 + 0.01%) and glucose (14.03 ± 0.03%). Besides, the total phenolic content, the radical scavenging activity, and the FRAP value of SBH were 15.38 ± 0.02 mg GAE/100 g of honey, 34.04 ± 0.21%, and 206.77 + 1.76 μM AAE/100 g honey respectively. Pretreatment with SBH protected WIL2-NS cells from H2O2-induced cell death and DNA damage (p 
    Matched MeSH terms: DNA Damage
  13. Al-Jaal B, Latiff A, Salama S, Hussain HM, Al-Thani NA, Al-Naimi N, et al.
    Toxins (Basel), 2021 04 08;13(4).
    PMID: 33917988 DOI: 10.3390/toxins13040267
    Mycotoxins are naturally occurring food toxins worldwide that can cause serious health effects. The measurement of mycotoxin biomarkers in biological fluids is needed to assess individuals' exposure. The aim of this study was to investigate the incidence of mycotoxins in the Qatari population. Serum samples from 412 adults and urinary samples from 559 adults were analyzed for the presence of mycotoxin biomarkers. Multimycotoxin approaches have been applied, using liquid chromatography mass spectrometry methods. Samples were further analyzed for the oxidative stress markers and compared with regard to the incidence of mycotoxins. The presence of mycotoxins was identified in 37% of serum samples and in less than 20% of urine samples. It was found that 88% of positive of the samples were positive for only one mycotoxin, while 12% of positive samples had two or more mycotoxins. Trichothecenes and zearalenone metabolites were most commonly detected mycotoxins, followed by aflatoxins, roquefortine C and mycophenolic acid. The presence of mycotoxins was found to positively correlate with oxidative stress markers. The obtained results illustrate the importance of mycotoxin biomonitoring studies in humans and the need to elucidate the underlying mechanisms of mycotoxin-induced toxicity.
    Matched MeSH terms: DNA Damage
  14. Ahmad Rohi Ghazali, Maziani Abdullah, Asmah Hamid, Asmariah Ahmad, Tava Shelan Nagapan, Ismarulyusda Ishak, et al.
    MyJurnal
    Pesticides and chemical fertilizers are widely used in agriculture to increase crop productivity among farmers. However, exposure to pesticides will give potential risk to human health. The aim of this study was to analyze the frequency of micronucleus (MN) and binucleus (BNu) formation in buccal cells from farmers who were exposed to pesticides using the MN assay. Buccal swabs were collected from the farmers in Tanjung Karang (n = 32) and Kelantan (n = 43) using wooden tongue depressor. A structured questionnaire was used to obtain demographic data of the farmers. Cytogenetic analysis was carried out by Acridin Orange (AO) staining 0.0025% (w/v). The frequency of MN and BNu as the biomarkers for cytogenetic damage was observed by using a fluorescence microscope. Comparison of frequency of MN and BNu is conducted in two areas namely Tanjung Karang, Selangor and Kelantan because of the agricultural activity and the type of pesticides used are different. Results showed that the frequencies of both MN and BNu among farmers in Tanjung Karang were significantly higher (p < 0.05) compared to farmers in Kelantan. Meanwhile, for the socio-demographic factors (age, smoking status, working period), MN and BNu frequencies among farmers in Tanjung Karang were also significantly higher (p < 0.05) as compared to farmers in Kelantan. While in the aspect of pesticide exposure, the frequencies of MN and BNu showed no significant difference between the frequency of pesticide spraying (p > 0.05) and the practices of PPE (Personal Protective Equipment) (p > 0.05). This may suggests that cytogenetic changes were not influenced by these factors. In addition, correlation study shows positive correlation between the frequency of MN with the pesticide exposure of farmers in Tanjung Karang (p > 0.05, r = 0.015) and Kelantan (p > 0.05, r = 0.0158). Besides, the frequency of BNu also has a positive correlation with the pesticide exposure among farmers in Tanjung Karang (p > 0.05, r = 0.036) and farmers in Kelantan (p > 0.05, r = 0.013). Hence, this present study demonstrated that exposure to pesticides increased the formation of MN and BNu among farmers and the prolonged use of pesticides may induce genotoxicity and DNA damage to human
    Matched MeSH terms: DNA Damage
  15. Mutalip SSM, Rajikin MH, Rahim SA, Khan NMN
    Int J Vitam Nutr Res, 2018 Feb;88(1-2):16-26.
    PMID: 30907699 DOI: 10.1024/0300-9831/a000492
    Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of PI3K/Akt-Cyclin D1 pathway against the nicotine-induced DNA damages is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as reproductive toxicant. 48 female balb/c mice (6-8 weeks) (23-25 g) were randomly divided into 8 groups (G1-G8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for 7 consecutive days. On Day 8, the females were superovulated and mated before euthanized for embryo collection (46 hours post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (G2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to control (G1). Intervention with mixed annatto δ-TCT (G3) and pure annatto δ-TCT (G4) significantly increased the number of produced 2-cell embryos by 127 % and 79 % respectively compared to G2, but these were lower than G1. Concurrent treatment with soy α-TOC (G5) decreased embryo production by 7 %. Supplementations with δ-TCT and α-TOC alone (G6-G8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50 %, 36 % and 41 % respectively, compared to control (G1). These results were found to be associated with the alterations in the PI3K/Akt-Cyclin D1 gene expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against the nicotinic embryonic damages. To our knowledge, this is the first attempt on studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
    Matched MeSH terms: DNA Damage
  16. Ridzuan NRA, Rashid NA, Othman F, Budin SB, Hussan F, Teoh SL
    Mini Rev Med Chem, 2019;19(14):1134-1143.
    PMID: 30894108 DOI: 10.2174/1389557519666190320124438
    Cisplatin is a widely used antineoplastic agent for the treatment of metastatic tumors, advanced bladder cancer and many other solid tumors. However, at higher doses, toxicities such as nephrotoxicity may appear. Cisplatin leads to DNA damage and subsequently renal cell death. Besides that, oxidative stress is also implicated as one of the main causes of nephrotoxicity. Several studies showed that numerous natural products: ginseng, curcumin, licorice, honey and pomegranate were able to reduce the oxidative stress by restoring the levels of antioxidant enzymes and also at the same time act as an anti-inflammatory agent. Furthermore, pre-treatment with vitamin supplementation, such as vitamin C, E and riboflavin markedly decreased serum urea and increased the levels of antioxidant enzymes in the kidney even after cisplatin induction in cancer patients. These natural products possess potent antioxidant and anti-inflammatory medicinal properties, and they can be safely used as a supplementary regime or combination therapy against cisplatin-induced nephrotoxicity. The present review focused on the protective role of a few natural products which is widely used in folk medicines in cisplatin-induced nephrotoxicity.
    Matched MeSH terms: DNA Damage
  17. Autsavapromporn N, Liu C, Kobayashi A, Ahmad TAFT, Oikawa M, Dukaew N, et al.
    Radiat Res, 2019 02;191(2):211-216.
    PMID: 30526323 DOI: 10.1667/RR15155.1
    Increased understanding of radiation-induced secondary bystander effect (RISBE) is relevant to radiation therapy since it likely contributes to normal tissue injury and tumor recurrence, subsequently resulting in treatment failure. In this work, we developed a simple method based on proton microbeam radiation and a transwell insert co-culture system to elucidate the RISBE between irradiated human lung cancer cells and nonirradiated human normal cells. A549 lung cancer cells received a single dose or fractionated doses of proton microbeam radiation to generate the primary bystander cells. These cells were then seeded on the top of the insert with secondary bystander WI-38 normal cells growing underneath in the presence or absence of gap junction intercellular communication (GJIC) inhibitor, 18-α-glycyrrhetnic acid (AGA). Cells were co-cultured before harvesting and assayed for micronuclei formation. The results of this work showed that fractionated doses of protons caused less DNA damage in the secondary bystander WI-38 cells compared to a single radiation dose, where the means differ by 20%. However, the damaging effect in the secondary bystander normal cells could be eliminated when treated with AGA. This novel work reflects our effort to demonstrate that GJIC plays a major role in the RISBE generated from the primary bystander cancer cells.
    Matched MeSH terms: DNA Damage
  18. Ng KL, Khor SM
    Anal Chem, 2017 09 19;89(18):10004-10012.
    PMID: 28845664 DOI: 10.1021/acs.analchem.7b02432
    Guanine (G), adenine (A), thymine (T), and cytosine (C) are the four basic constituents of DNA. Studies on DNA composition have focused especially on DNA damage and genotoxicity. However, the development of a rapid, simple, and multiplex method for the simultaneous measurement of the four DNA bases remains a challenge. In this study, we describe a graphite-based nanocomposite electrode (Au-rGO/MWCNT/graphite) that uses a simple electro-co-deposition approach. We successfully applied the developed sensor for multiplex detection of G, A, T, and C, using square-wave voltammetry. The sensor was tested using real animal and plant DNA samples in which the hydrolysis of T and C could be achieved with 8 mol L-1 of acid. The electrochemical sensor exhibited excellent sensitivity (G = 178.8 nA/μg mL-1, A = 92.9 nA/μg mL-1, T = 1.4 nA/μg mL-1, and C = 15.1 9 nA/μg mL-1), low limit of detection (G, A = 0.5 μg mL-1; T, C = 1.0 μg mL-1), and high selectivity in the presence of common interfering factors from biological matrixes. The reliability of the established method was assessed by method validation and comparison with the ultraperformance liquid chromatography technique, and a correlation of 103.7% was achieved.
    Matched MeSH terms: DNA Damage
  19. Anwar S, Madkor HR, Ahmed N, Wagih ME
    Indian J Pharmacol, 2018 9 1;50(3):108-115.
    PMID: 30166747 DOI: 10.4103/ijp.IJP_660_16
    OBJECTIVE: Silymarin, extracted from the seeds of Silybum marianum L. (Milk thistle), is traditionally used for treating various illnesses such as diabetes, cancer, inflammation, hepatitis, liver cirrhosis, and renal problems. Acute cytotoxicity and genotoxicity studies have been reported with ambiguous outcomes; however, its relevant anticlastogenic potential is not yet evaluated. This study was aimed to evaluate in vivo subacute anticlastogenic properties of silymarin to validate its use as a medicinal agent.

    MATERIALS AND METHODS: Silymarin was isolated from seeds of milk thistle. Various genotoxicity bioassays of silymarin were performed using mice. First, the bone marrow cell proliferation was estimated by calculating mitotic index. Second, the chromosomal abnormalities in mice bone marrow cells were studied. Third, micronucleated polychromatic erythrocytes (MPE) test and in vivo activation of sister chromatid exchanges (SCEs) were carried out in mice bone marrow cells. Finally, primary spermatocytes were analyzed to estimate genotoxic effect of silymarin on germ cells.

    RESULTS: We found that silymarin is capable of inducing a significant increase (P ≤ 0.05) in cell proliferation of bone marrow cells. There is no increase in chromosomal aberrations following silymarin treatments. Results clearly showed that it significantly (P ≤ 0.05) decreased the MPE. Likewise, it was found to be a negative inducer of SCEs. It decreased in total abnormal metaphase, SCEs, MPE, and aberrant diakinesis.

    CONCLUSION: The results demonstrated that silymarin has a strong anticlastogenic activity upon mice genome in somatic and germ cells, indicating its safe use as a medicinal substance. Furthermore, it is not only safe but also has protective effect from clastogens.

    Matched MeSH terms: DNA Damage
  20. Leong LM, Chan KM, Hamid A, Latip J, Rajab NF
    PMID: 26884792 DOI: 10.1155/2016/2091085
    The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME) on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.
    Matched MeSH terms: DNA Damage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links