Displaying publications 81 - 100 of 166 in total

Abstract:
Sort:
  1. Taniselass S, Arshad MKM, Gopinath SCB
    Biosens Bioelectron, 2019 Apr 01;130:276-292.
    PMID: 30771717 DOI: 10.1016/j.bios.2019.01.047
    Graphene is a 2-dimensional nanomaterial with an atomic thickness has attracted a strong scientific interest owing to their remarkable optical, electronic, thermal, mechanical and electrochemical properties. Graphene-based materials particularly graphene oxide and reduced graphene oxide are widely utilized in various applications ranging from food industry, environmental monitoring and biomedical fields as well as in the development of various types of biosensing devices. The richness in oxygen functional groups in the materials serves as a catalysis for the development of biosensors/electrochemical biosensors which promotes for an attachment of biological recognition elements, surface functionalization and compatible with micro- and nano- bio-environment. In this review, the graphene-based materials application in electrochemical biosensors based on recent advancement (e.g; the surface modification and analytical performances) and the utilization of such biosensors to monitor the noncommunicable diseases are presented. The detection performances of the graphene-based electrochemical biosensors are in the range of ng/mL and have reached up to fg/mL in detecting the targets of NCDs with higher selectivity, sensitivity and stability with good reproducibility attributes. We have discussed the advances while addressing the very specific biomarkers for the NCDs detection. Challenges and possible future research directions for the NCDs detection based on graphene nanocomposite with other 2D nanomaterials are outlined.
    Matched MeSH terms: Electrochemical Techniques*
  2. Hassan RA, Heng LY, Tan LL
    Sci Rep, 2019 04 23;9(1):6379.
    PMID: 31015498 DOI: 10.1038/s41598-019-42757-y
    A novel disposable electrochemical biosensor based on immobilized calf thymus double-stranded DNA (dsDNA) on the carbon-based screen-printed electrode (SPE) is developed for rapid biorecognition of carrageenan by using methylene blue (MB) redox indicator. The biosensor protocol for the detection of carrageenan is based on the concept of competitive binding of positively charged MB to the negatively charged dsDNA and carrageenan. The decrement in the MB cathodic peak current (ipc) signal as a result of the released MB from the immobilized dsDNA, and attracted to the carrageenan can be monitored via differential pulse voltammetry (DPV). The biosensor showed high sensitivity and selectivity to carrageenan at low concentration without interference from other polyanions such as alginate, gum arabic and starch. Calibration of the biosensor with carrageenan exhibited an excellent linear dependence from 1-10 mg L-1 (R2 = 0.98) with a detection limit of 0.08 mg L-1. The DNA-based carrageenan biosensor showed satisfactory reproducibility with 5.6-6.9% (n = 3) relative standard deviations (RSD), and possessing several advantages such as simplicity, fast and direct application to real sample analysis without any prior extensive sample treatments, particularly for seaweeds and food analyses.
    Matched MeSH terms: Electrochemical Techniques
  3. He J, Sunarso J, Miao J, Sun H, Dai J, Zhang C, et al.
    J Hazard Mater, 2019 05 05;369:699-706.
    PMID: 30831522 DOI: 10.1016/j.jhazmat.2019.02.070
    Effective regulation of p-phenylenediamine (PPD), a widely used precursor of hair dye that is harmful to human health in large concentration, relies upon an accurate yet simple detection of PPD. In this context, amperometric electrode sensor based on perovskite oxide becomes attractive given its portability, low cost, high sensitivity, and rapid processing time. This work reports the systematic characterization of a series of Sr-doped PrCoO3-δ perovskite oxides with composition of Pr1-xSrxCoO3-δ(x = 0, 0.2, 0.4, 0.6, 0.8, and 1) for PPD detection in an alkaline solution. PSC82 deposited onto glassy carbon electrode (PSC82/GCE) generates the highest redox currents which correlates with the highest hydrogen peroxide intermediates (HO2-) yield and the σ*-orbital (eg) filling of Co that is closest to unity for PSC82. PSC82/GCE provides the highest sensitivities of 655 and 308 μA mM-1 cm-2 in PPD concentration range of 0.5-2,900 and 2,900-10,400 μM, respectively, with a limit of detection of 0.17 μM. PSC82/GCE additionally demonstrates high selectivity to PPD and long term stability during 50 consecutive cyclic voltammetry scans and over 1-month storage period. The potential applicability of PSC82/GCE was also demonstrated by confirming the presence of very low concentration of PPD of below 0.5% in real hair dyes.
    Matched MeSH terms: Electrochemical Techniques
  4. Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, et al.
    Bioelectrochemistry, 2019 Jun;127:136-144.
    PMID: 30825657 DOI: 10.1016/j.bioelechem.2019.02.005
    Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO2) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO2 nanocomposite matrix through electrostatic interactions. The changes in electrical conductivity on the electrode surface were evaluated using electroanalytical methods. DNA aptamer adsorbed on the rGO-TiO2 surface bound to the bacterial cells at the electrode interface causing a physical barrier inhibiting the electron transfer. This interaction decreased the DPV signal of the electrode proportional to decreasing concentrations of the bacterial cells. The optimized aptasensor exhibited high sensitivity with a wide detection range (108 to 101 cfu mL-1), a low detection limit of 101 cfu mL-1 and good selectivity for Salmonella bacteria. This rGO-TiO2 aptasensor is an excellent biosensing platform that offers a reliable, rapid and sensitive alternative for foodborne pathogen detection.
    Matched MeSH terms: Electrochemical Techniques/methods
  5. Manan FAA, Hong WW, Abdullah J, Yusof NA, Ahmad I
    PMID: 30889711 DOI: 10.1016/j.msec.2019.01.082
    Novel biosensor architecture based on nanocrystalline cellulose (NCC)/CdS quantum dots (QDs) nanocomposite was developed for phenol determination. This nanocomposite was prepared with slight modification of nanocrystalline cellulose (NCC) with cationic surfactant of cetyltriammonium bromide (CTAB) and further decorated with 3-mercaptopropionic acid (3-MPA) capped CdS QDs. The nanocomposite material was then employed as scaffold for immobilization of tyrosinase enzyme (Tyr). The electrocatalytic response of Tyr/CTAB-NCC/QDs nanocomposite towards phenol was evaluated using differential pulse voltammetry (DPV). The current response obtained is proportional to the concentration of phenol which attributed to the reduction of o-quinone produced at the surface of the modified electrode. Under the optimal conditions, the biosensor exhibits good linearity towards phenol in the concentration range of 5-40 μM (R2 = 0.9904) with sensitivity and limit of detection (LOD) of 0.078 μA/μM and 0.082 μM, respectively.
    Matched MeSH terms: Electrochemical Techniques
  6. Jajuli MN, Hussin MH, Saad B, Rahim AA, Hébrant M, Herzog G
    Anal Chem, 2019 06 04;91(11):7466-7473.
    PMID: 31050400 DOI: 10.1021/acs.analchem.9b01674
    A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.
    Matched MeSH terms: Electrochemical Techniques*
  7. Citartan M, Tang TH
    Talanta, 2019 Jul 01;199:556-566.
    PMID: 30952298 DOI: 10.1016/j.talanta.2019.02.066
    Aptamers are nucleic acid-based molecular recognition elements that are specific and have high binding affinity against their respective targets. On account of their target recognition capacity, aptamers are widely utilized in a number of applications including diagnostics. This review aims to highlight the recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Significant focus is given on the primary assay formats of aptamers such as fluorescence, electrochemical, surface plasmon resonance (SPR) and colorimetric assays. A potpourri of platforms such as paper-based device, lateral flow assay, portable electrodes, portable SPR and smart phones expedient for point-of-care (POC) diagnostics are discussed. Emphasis is also given on the technicalities and assay configurations associated with the sensors.
    Matched MeSH terms: Electrochemical Techniques
  8. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Electrochemical Techniques/methods*
  9. Aziz SB, Hamsan MH, Abdullah RM, Kadir MFZ
    Molecules, 2019 Jul 09;24(13).
    PMID: 31323966 DOI: 10.3390/molecules24132503
    In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature of the XRD pattern of doped samples compared to pure CS:MC system evidencedthe amorphous character of the electrolyte samples. The morphology of the samples in FESEM images supported the amorphous behavior of the solid electrolyte films. The results of impedance and Bode plotindicate that the bulk resistance decreasedwith increasing salt concentration. The highest DC conductivity was found to be 2.81 × 10-3 S/cm. The electrical equivalent circuit (EEC) model was conducted for selected samples to explain the complete picture of the electrical properties.The performance of EDLC cells was examined at room temperature by electrochemical techniques, such as impedance spectroscopy, cyclic voltammetry (CV) and constant current charge-discharge techniques. It was found that the studied samples exhibit a very good performance as electrolyte for EDLC applications. Ions were found to be the dominant charge carriers in the polymer electrolyte. The ion transference number (tion) was found to be 0.84 while 0.16 for electron transference number (tel). Through investigation of linear sweep voltammetry (LSV), the CS:MC:NH4SCN system was found to be electrochemically stable up to 1.8 V. The CV plot revealed no redox peak, indicating the occurrence of charge double-layer at the surface of activated carbon electrodes. Specific capacitance (Cspe) for the fabricated EDLC was calculated using CV plot and charge-discharge analyses. It was found to be 66.3 F g-1 and 69.9 F g-1 (at thefirst cycle), respectively. Equivalent series resistance (Resr) of the EDLC was also identified, ranging from 50.0 to 150.0 Ω. Finally, energy density (Ed) was stabilized to anaverage of 8.63 Wh kg-1 from the 10th cycle to the 100th cycle. The first cycle obtained power density (Pd) of 1666.6 W kg-1 and then itdropped to 747.0 W kg-1 at the 50th cycle and continued to drop to 555.5 W kg-1 as the EDLC completed 100 cycles.
    Matched MeSH terms: Electrochemical Techniques
  10. Azri FA, Selamat J, Sukor R, Yusof NA, Ahmad Raston NH, Nordin N, et al.
    Molecules, 2019 Aug 29;24(17).
    PMID: 31470528 DOI: 10.3390/molecules24173141
    This work presents a simple green synthesis of gold nanoparticles (AuNPs) by using an aqueous extract of Etlingera elatior (torch ginger). The metabolites present in E. elatior, including sugars, proteins, polyphenols, and flavonoids, were known to play important roles in reducing metal ions and supporting the subsequent stability of nanoparticles. The present work aimed to investigate the ability of the E. elatior extract to synthesise AuNPs via the reduction of gold (III) chloride hydrate and characterise the properties of the nanoparticles produced. The antioxidant properties of the E. elatior extract were evaluated by analysing the total phenolic and total flavonoid contents. To ascertain the formation of AuNPs, the synthesised particles were characterised using the ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) microscopy, and dynamic light scattering (DLS) measurement. The properties of the green synthesised AuNPs were shown to be comparable to the AuNPs produced using a conventional reducing agent, sodium citrate. The UV-Vis measured the surface plasmon resonance of the AuNPs, and a band centered at 529 nm was obtained. The FTIR results proved that the extract contained the O-H functional group that is responsible for capping the nanoparticles. The HRTEM images showed that the green synthesized AuNPs were of various shapes and the average of the nanoparticles' hydrodynamic diameter was 31.5 ± 0.5 nm. Meanwhile, the zeta potential of -32.0 ± 0.4 mV indicates the high stability and negative charge of the AuNPs. We further successfully demonstrated that using the green synthesised AuNPs as the nanocomposite to modify the working surface of screen-printed carbon electrode (SPCE/Cs/AuNPs) enhanced the rate of electron transfer and provided a sensitive platform for the detection of Cu(II) ions.
    Matched MeSH terms: Electrochemical Techniques/instrumentation*
  11. Lah ZMANH, Ahmad SAA, Zaini MS, Kamarudin MA
    J Pharm Biomed Anal, 2019 Sep 10;174:608-617.
    PMID: 31265987 DOI: 10.1016/j.jpba.2019.06.024
    A facile electrochemical sandwich immunosensor for the detection of a breast cancer biomarker, the human epidermal growth factor receptor 2 (HER2), was designed, using lead sulfide quantum dots-conjugated secondary HER2 antibody (Ab2-PbS QDs) as a label. Using Ab2-PbS QDs in the development of electrochemical immunoassays leads to many advantages such as straightforward synthesis and well-defined stripping signal of Pb(II) through acid dissolution, which in turn yields better sensing performance for the sandwiched immunosensor. In the bioconjugation of PbS QDs, the available amine and hydroxyl groups from secondary anti-HER2 and capped PbS QDs were bound covalently together via carbonyldiimidazole (CDI) acting as a linker. In order to quantify the biomarker, SWV signal was obtained, where the Pb2+ ions after acid dissolution in HCl was detected. The plated mercury film SPCE was also detected in situ. Under optimal conditions, HER2 was detected in a linear range from 1-100 ng/mL with a limit of detection of 0.28 ng/mL. The measures of satisfactory recoveries were 91.3% to 104.3% for the spiked samples, displaying high selectivity. Therefore, this method can be applied to determine HER2 in human serum.
    Matched MeSH terms: Electrochemical Techniques*
  12. Aziz SB, Karim WO, Brza MA, Abdulwahid RT, Saeed SR, Al-Zangana S, et al.
    Int J Mol Sci, 2019 Oct 23;20(21).
    PMID: 31652832 DOI: 10.3390/ijms20215265
    In this work, analysis of ion transport parameters of polymer blend electrolytes incorporated with magnesium trifluoromethanesulfonate (Mg(CF3SO3)2) was carried out by employing the Trukhan model. A solution cast technique was used to obtain the polymer blend electrolytes composed of chitosan (CS) and poly (2-ethyl-2-oxazoline) (POZ). From X-ray diffraction (XRD) patterns, improvement in amorphous phase for the blend samples has been observed in comparison to the pure state of CS. From impedance plot, bulk resistance (Rb) was found to decrease with increasing temperature. Based on direct current (DC) conductivity (σdc) patterns, considerations on the ion transport models of Arrhenius and Vogel-Tammann-Fulcher (VTF) were given. Analysis of the dielectric properties was carried out at different temperatures and the obtained results were linked to the ion transport mechanism. It is demonstrated in the real part of electrical modulus that chitosan-salt systems are extremely capacitive. The asymmetric peak of the imaginary part (Mi) of electric modulus indicated that there is non-Debye type of relaxation for ions. From frequency dependence of dielectric loss (ε″) and the imaginary part (Mi) of electric modulus, suitable coupling among polymer segmental and ionic motions was identified. Two techniques were used to analyze the viscoelastic relaxation dynamic of ions. The Trukhan model was used to determine the diffusion coefficient (D) by using the frequency related to peak frequencies and loss tangent maximum heights (tanδmax). The Einstein-Nernst equation was applied to determine the carrier number density (n) and mobility. The ion transport parameters, such as D, n and mobility (μ), at room temperature, were found to be 4 × 10-5 cm2/s, 3.4 × 1015 cm-3, and 1.2 × 10-4 cm2/Vs, respectively. Finally, it was shown that an increase in temperature can also cause these parameters to increase.
    Matched MeSH terms: Electrochemical Techniques/methods
  13. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
    Matched MeSH terms: Electrochemical Techniques/methods*
  14. Md Sani ND, Ariffin EY, Sheryn W, Shamsuddin MA, Heng LY, Latip J, et al.
    Sensors (Basel), 2019 Nov 22;19(23).
    PMID: 31766637 DOI: 10.3390/s19235111
    A toxicity electrochemical DNA biosensor has been constructed for the detection of carcinogens using 24 base guanine DNA rich single stranded DNA, and methylene blue (MB) as the electroactive indicator. This amine terminated ssDNA was immobilized onto silica nanospheres and deposited on gold nanoparticle modified carbon-paste screen printed electrodes (SPEs). The modified SPE was initially exposed to a carcinogen, followed by immersion in methylene blue for an optimized duration. The biosensor response was measured using differential pulse voltammetry. The performance of the biosensor was identified on several anti-cancer compounds. The toxicity DNA biosensor demonstrated a linear response range to the cadmium chloride from 0.0005 ppm to 0.01 ppm (R2 = 0.928) with a limit of detection at 0.0004 ppm. The biosensor also exhibited its versatility to screen the carcinogenicity of potential anti-cancer compounds.
    Matched MeSH terms: Electrochemical Techniques/methods*
  15. Lin J, Gopinath SCB, Lakshmipriya T, Chen Y, Yuan WR, Yang M
    Int J Biol Macromol, 2019 Dec 01;141:564-569.
    PMID: 31493451 DOI: 10.1016/j.ijbiomac.2019.09.012
    Human papilloma virus (HPV) affects predominantly the genital area, which includes vagina, cervix, penis, vulva scrotum, rectum and anus. Among 100 types of HPV, 14 types are considered to cause the risky cancer. The gene HPV-16 E7 is responsible for the development of cancer with the infected women. Earlier identification of this gene sequence avoids the cancer progression. The targeted HPV-16 E7 sequence was sandwiched by capture and reporter sequences on the carbodiimidazole-modified interdigitated electrode (IDE) surface. Target sequence at 100 f. was paired to the capture sequence immobilized on IDE sensing surface. To this surface, different concentrations of reporter sequence with and without gold rod (GNR) were evaluated. In both cases the detections were attained 1 aM by the reporter sequence pairing and with GNR increments in current were found. This enhancement was found to be 1000 folds, considering the condition was revealed in the absence of reporter. This sandwich detection strategy of capture-target-reporter sequences for HPV-16 detection on the IDE sensing surface helps to diagnose the association of cervical cancer.
    Matched MeSH terms: Electrochemical Techniques*
  16. Lai CW, Lau KS, Chou PM
    J Nanosci Nanotechnol, 2019 Dec 01;19(12):7934-7942.
    PMID: 31196312 DOI: 10.1166/jnn.2019.16777
    Using solar-powered water electrolysis systems for hydrogen generation is a key decision for the development of a sustainable hydrogen economy. A facile approach is presented in the present investigation to improve the solar-powered photoelectrochemical performance of water electrolysis systems by synthesising well-aligned and highly ordered TiO₂ nanotube films without bundling through the electrochemical anodisation technique. Herein, geometrical calculations were conducted for all synthesised TiO₂ nanotubes, and determination of the aspect ratio (AR) and geometric surface area factor (G) was achieved. On the basis of the collected data, well-aligned TiO₂ nanotubes with an AR of approximately 60 and G of approximately 400 m² ·g-1 were successfully formed in an electrolyte mixture of ethylene glycol with 0.3 wt% NH4F and 5 wt% H₂O₂ at 40 V for 60 min. The nanotubes were subsequently annealed at 400 °C to form anatase-phase TiO₂ nanotube films. The resultant well-aligned and highly ordered TiO₂ nanotube films exhibited a photocurrent density of 1.5 mA · cm-2 due to a large number of photo-induced electrons moving along the tube axis and perpendicular to the Ti substrate, which greatly reduces interfacial recombination losses.
    Matched MeSH terms: Electrochemical Techniques
  17. AZRILAWANI AHMAD, NUR ANIS ZAFIRAH ZAINORDIN, NUR AMIRA JAAFAR
    MyJurnal
    A preliminary assessment of a simple and rapid electrochemical method was carried out to analyse imidacloprid (IMI) in water samples using cyclic voltammetry (CV) based on modified screen-printed gold electrode (SPGE). Self-assembled monolayer (SAM) was optimized using 11-mercaptoundecanoic acid (11-MUA) with several parameters such as scan rates, type of supporting electrolyte, and pH of the supporting electrolyte. The modified SPGE showed high suppressed current against the potential due to the formation of a monolayer on the electrode surface. Surface morphology of the electrode was analysed using Scanning Electron Microscopy (SEM) confirming that 11-MUA was present on the modified SPGE. The water samples were collected from GM Peladang, Kuala Terengganu and two locations at Universiti Malaysia Terengganu. Method detection limit was expressed as limit of detection (LOD) and limit of quantification (LOQ) for modified SPGE which were calculated at 3.784 and 12.613 mg/L in water samples, respectively. This study showed that the reduction peak current observed on the modified electrode was lower compared with oxidation peak current. Hence, gold is unsuitable for IMI detection.
    Matched MeSH terms: Electrochemical Techniques
  18. Mahmoodi P, Rezayi M, Rasouli E, Avan A, Gholami M, Ghayour Mobarhan M, et al.
    J Nanobiotechnology, 2020 Jan 13;18(1):11.
    PMID: 31931815 DOI: 10.1186/s12951-020-0577-9
    BACKGROUND: In several years ago, infection with human papillomaviruses (HPVs), have been prevalent in the worlds especially HPV type 18, can lead to cervical cancer. Therefore, rapid, accurate, and early diagnosis of HPV for successful treatment is essential. The present study describes the development of a selective and sensitive electrochemical biosensor base on DNA, for early detection of HPV-18. For this purpose, a nanocomposite of reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) were electrodeposited on a screen-printed carbon electrode (SPCE). Then, Au nanoparticles (AuNPs) were dropped on a modified SPCE. Subsequently, single strand DNA (ssDNA) probe was immobilized on the modified electrode. The link attached between AuNPs and probe ssDNA provided by L-cysteine via functionalizing AuNPs (Cys-AuNPs). The differential pulse voltammetry (DPV) assay was also used to electrochemical measurement. The measurement was based on the oxidation signals of anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) before and after hybridization between the probe and target DNA.

    RESULTS: The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the proposed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical samples.

    CONCLUSIONS: According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensitive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.

    Matched MeSH terms: Electrochemical Techniques/methods*
  19. Letchumanan I, Gopinath SCB, Arshad MKM
    Mikrochim Acta, 2020 01 14;187(2):128.
    PMID: 31938893 DOI: 10.1007/s00604-020-4115-0
    A method is described for the electrochemical determination of squamous cell carcinoma (SCC) antigen, and by testing the effect of 30 nm gold nanoparticles (GNPs). Three comparative studies were performed in the presence and absence of GNPs, and with agglomerated GNPs. The divalent ion Ca(II) was used to induce a strong agglomeration of GNPs, as confirmed by colorimetry and voltammetry. Herein, colorimetry was used to test the best amount of salt needed to aggregate the GNPs. Despite, voltammetry was used to determine the status of biomolecules on the sensor. The topography of the surface of ZnO-coated interdigitated electrodes was analyzed by using 3D-nano profilometry, scanning electron microscopy, atomic force microscopy and high-power microscopy. The interaction between SCC antigen and antibody trigger vibrations on the sensor and cause dipole moment, which was measured using a picoammeter with a linear sweep from 0 to 2 V at 0.01 V step voltage. The sensitivity level was 10 fM by 3σ calculation for the dispersed GNP-conjugated antigen. This indicates a 100-fold enhancement compared to the condition without GNP conjugation. However, the sensitivity level for agglomerated GNPs conjugated antibody was not significant with 100 fM sensitivity. Specificity was tested for other proteins in serum, namely blood clotting factor IX, C-reactive protein, and serum albumin. The SCC antigen was quantified in spiked serum and gave recoveries that ranged between 80 and 90%. Graphical abstractSchematic representation of SCC (squamous cell carcinoma) antigen determination using divalent ion induced agglomerated GNPs. Sensitivity increment depends on the occurrence of more SCC antigen and antibody binding event via GNPs integration. Notably, lower detection limit was achieved at femto molar with proper orientation of biological molecules.
    Matched MeSH terms: Electrochemical Techniques
  20. Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF
    Anal Biochem, 2020 01 15;589:113489.
    PMID: 31655050 DOI: 10.1016/j.ab.2019.113489
    Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
    Matched MeSH terms: Electrochemical Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links