Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidiogenous cell morphology. The detection of endophytic F. oxysporum and F. solani in the roots of lawn grass contributes to the knowledge of both the distribution of the two Fusarium species and the importance of roots as endophytic niches for Fusarium species.
Bakteria endofit adalah berpotensi untuk menghasilkan antibiotik dan metabolit sekunder yang lain. Penghasilan metabolit sekunder dapat ditingkatkan melalui pengoptimuman kandungan nutrien seperti sumber nitrogen. Dalam kajian ini kandungan sumber nitrogen iaitu ammonium sulfat, ammonium dihidrogen fosfat, kalium nitrat dan natrum nitrat telah diubahsuai di dalam kaldu International Streptomyces Project 4 (ISP4) untuk pertumbuhan Streptomyces SUK 02. Pengekstrakan dilakukan dengan menggunakan etil asetat dan aktiviti antifungus ditentukan dengan menggunakan teknik serapan agar. Fungus ujian yang digunakan adalah Aspergillus fumigatus dan Fusarium solani. Hasil kajian menunjukkan peratusan berat (w/v) ekstrak kasar maksima didapati daripada kaldu yang mengandungi natrium nitrat (3.30%), diikuti oleh ammonium dihidrogen fosfat (2.24%), ammonium sulfat (1.46%) dan kalium nitrat (1.20%). Aktiviti antifungus dikesan daripada ekstrak bersumberkan nitrogen ammonium sulfat.Peratus perencatan ekstrak tersebut terhadap Aspergillus fumigatus dan Fusarium solani adalah 33.0-35.0% dan 17.4-30.0%, masing-masing. Manakala nilai MIC terhadap Aspergillus fumigatus adalah 1.5 mg/ml. Sebagai kesimpulan, natrium nitrat merupakan sumber nitrogen yang sesuai bagi partumbuhan optimum Streptomyces SUK 02 manakala kehadiran ammonium sulfat boleh meningkatkan aktiviti antifungus.
This study intended to investigate the level on airborne microbe in indoor air for new constructed building. It was divided by three different phase of building commissioning in Bandar Baru Bangi, Selangor. The first phase of the sampling was carried out after the building fully handed over from the main contractor to the building owner. Second phase of the sampling take place after the building is equipped with furniture. Phase three sampling is conducted after one month of building occupancy. Airborne microbes’ concentrations were determined by using a single stage impactor (Biosampler) as per requirement of National Institute of Occupational Safety and Health (NIOSH) method, NIOSH Manual Analytical Method MAM 0800. The total concentration of airborne bacteria and fungi were average to 641 and 38 CFU/m³ in the first phase, 133 and 117 CFU/m³ in the second phase, and 389 and 52 CFU/m³ in the third phase. These findings indicate that although a new constructed building should be having a significant background level of airborne microbe (total bacteria and total fungi). The building owner should be aware to their indoor air status to protect the occupant from the safety and health problem (risk) especially for ventilated building.
A six-year-old Thoroughbred race horse was presented with left unilateral mucopurulent nasal discharge. Endoscopic examination revealed atypical mycotic lesion within the guttural pouch in which the fungal mass was not located on any neurovascular structures. This case was successfully treated by the combination of manual debulking of fungal diphtheritic plaques and medical treatment that included daily local irrigation and systemic medication. There were no complications and the horse returned to race three weeks later.
FERMSOSTAT is a developed laboratory scale solid state fermenter. It is a horizontal stirrer drum bioreactor with about 70 L capacities. The fermenter is made of stainless steel which is anti-corrosive and non-toxic to the process organism. The fermenter is equipped with sets of control systems for temperature, agitation, aeration and also outlets for substrate sampling as well as inlets for inoculation and substrate additions. The uniqueness of this FERMSOSTAT system is its ability to carry out in situ substrate sterilization and extraction of enzymes at the end of SSF process. Moreover, the mixing system provided by FERMSOSTAT can be performed either full or half mixing as well as forward or reverse mixing. Furthermore, the mixing can be programmed to run at certain agitation rate and time interval during the fermentation process to prevent or reduce damage to the fungus mycelia. FERMSOSTAT is a developed SSF bioreactor and not an improvement of any existing one. The performances of FERMSOSTAT have been evaluated. Under optimum solid state fermentation conditions, about 63.4, 397 and 3.21 U/g of CMCase, xylanase and FPase activities were detected, which were higher compared to the tray system.
Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018-2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar" was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.
Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units) were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales), representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community.
Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.
This study reports the antioxidant potential and L-asparaginase production of culturable fungal endophytes from Dendrobium orchids in Malaysia. Twenty-nine isolates were screened using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to determine their free radical scavenging activities and antioxidant capacity (IC50 and AEAC). L-asparaginase production of fungal endophytes was detected by the qualitative plate assay, and the enzyme activities estimated via the Nesslerization method. All 29 endophytic isolates exhibited various degrees of radical scavenging activities (35.37%-77.23%), with Fusarium fujikuroi (D1) identified as having the highest antioxidant capacity (IC50 6.097 mg/mL) and the highest AEAC value (11.55 mg/g). For L-asparaginase production, the majority of the isolates (89.66%) showed positive results, especially among the culturable species of Fusarium, Trichoderma, and Daldinia. Most Fusarium spp. were able to produce L-asparaginase (80.77%), but the highest L-asparaginase activity was detected in Daldinia eschscholtzii (D14) with 2.128 units/mL. Results from this study highlighted the potential of endophytic fungi from medicinal orchids (Dendrobium sp.) as natural sources of bioactive compounds to be developed into novel antioxidants and anticancer drugs.
Bloodstream infections are an important cause of morbidity and mortality among hospitalized patients and the surveillance of etiological agents in these infections is important for their prevention and treatment. Data on common organisms isolated from blood cultures from Malaysia are limited, and our aim was to identify the common bloodstream isolates in hospitalized patients at the University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia.
During an investigation of submerged leaves and twigs sampled from tropical peat swamp forests located in Peninsular Malaysia, an anamorphic fungus not attributable to a described genus was detected and isolated in pure culture. Conidial ontogeny was thoroughly studied and illustrated using both light and SEM, which revealed a unique conidial morphology. Analysis of partial nuLSU rDNA and ITS data revealed a phylogenetic position within the Xylariales (Ascomycota), but family affiliation remained unclear.
Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs' contribution to genome architecture and versatility.
The exposure of school children to indoor air pollutants has increased allergy and respiratory diseases. The objective of this study were to determine the toxicodynamic interaction of indoor pollutants exposure, biological and chemical with expression of adhesion molecules on eosinophil and neutrophil. A self-administered questionnaire, allergy skin test, and fractional exhaled nitric oxide (FeNO) analyser were used to collect information on health status, sensitization to allergens and respiratory inflammation, respectively among school children at age of 14 years. The sputum induced were analysed to determine the expression of CD11b, CD35, CD63 and CD66b on eosinophil and neutrophil by using flow cytometry technique. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde, temperature, and relative humidity were measured inside the classrooms. The fungal DNA were extracted from settled dust collected from classrooms and evaluated using metagenomic techniques. We applied chemometric and regression in statistical analysis. A total of 1869 unique of operational taxonomic units (OTUs) of fungi were identified with dominated at genus level by Aspergillus (15.8%), Verrucoconiothyrium (5.5%), and Ganoderma (4.6%). Chemometric and regression results revealed that relative abundance of T. asahii were associated with down regulation of CD66b expressed on eosinophil, and elevation of FeNO levels in predicting asthmatic children with model accuracy of 63.6%. Meanwhile, upregulation of CD11b expressed on eosinophil were associated with relative abundance of A. clavatus and regulated by PM2.5. There were significant association of P. bandonii with upregulation of CD63 expressed on neutrophil and exposure to NO2. Our findings indicate that exposure to PM2.5, NO2, T. asahii, P.bandonii and A.clavatus are likely interrelated with upregulation of activation and degranulation markers on both eosinophil and neutrophil.
Hands of Health Care Personnel (HCP) are one of the most common vehicles for the transmission of infection. Microorganisms can survive well on the hands of HCP for a certain duration. Therefore, the purpose of this study is to bring awareness to HCP that their hands can actually be contaminated with many microorganisms. These microbes on the hands of HCP can potentially infect their patients if they do not comply with the proper hand hygiene practice. This cross-sectional study was conducted at a randomly selected Intensive Care Unit (ICU) and general ward in a hospital. Twenty five HCP from each ward were randomly selected and their hands were imprinted on blood culture plates. Microorganism growth were quantified and identified. Data were analyzed and presented as descriptive analysis. One hundred blood agar plates were processed and analyzed. Majority (71%) of the samples had more than 50 colony-forming units (CFU) and only 17% of the samples had less than 25 CFU. Microorganisms identified include Staphylococcus spp., Acinetobacter spp., Enterobacteriaceae, Pseudomonas spp., Moraxella, Delftiaacidovorans and fungi. All isolated microorganisms were antibiotic sensitive strain. This study showed that the hands of HCP were contaminated with many microorganisms. Therefore, it is imperative that HCP must practice proper hand hygiene when taking care of their patients in the wards.
An investigation was undertaken for screening and isolating nematophagous-fungi from the faecal samples of various grazing animals and soils in Malaysia. Total of 111 faeces and 50 soil samples were collected and the samples were cultured on 2% water agar plates. The growth of nematophagous-fungi was stimulated by sprinkling-baiting technique. The conidia of suspected nematophagous-fungi were inoculated on 2% water agar plates. All isolated were maintained on 2% cornmeal agar plates. Verticillium spp., Fusarium spp. and Arthrobotrys spp. were identified from the faecal and soil samples. 62.5% of the faecal samples and 100% of the soil samples were shown to be positive with nematophagous-fungi. This study highlights the present of nematophagous-fungi population in faecal and soil samples. Much study remains to be done to better understanding some fungi especially their mode of action and their predatory behaviour against parasitic nematodes.
Loquat [Eriobotrya japonica (Thunb.) Lindl.] is an important fruit crop in Pakistan; however, a constant decline in its production is noted due biotic and abiotic stresses, particularly disease infestation. Fungal pathogens are the major disease-causing agents; therefore, their identification is necessary for devising management options. This study explored Taxila, Wah-Cantt, Tret, Chatar, Murree, Kalar-Kahar, Choa-Saidan-Shah and Khan-Pur districts in the Punjab and Khyber Paktoon Khawa (KPK) provinces of Pakistan to explore the diversity of fungal pathogens associated with loquat. The samples were collected from these districts and their microscopic characterizations were accomplished for reliable identification. Alternaria alternata, Curvularia lunata, Lasiodiplodia theobromae, Aspergilus flavis, Botrytis cinerea, Chaetomium globosum, Pestalotiopsis mangiferae and Phomopsis sp. were the fungal pathogens infesting loquat in the study area. The isolates of A. alternata and C. lunata were isolated from leaf spots and fruit rot, while the isolates of L. theobromae were associated with twig dieback. The remaining pathogens were allied with fruit rot. The nucleotide evidence of internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) were computed from all the pathogens and submitted in the database of National Center for Biotechnology Information (NCBI). For multigene analysis, beta-tubulin (BT) gene and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were explored for A. alternata and C. lunata isolates, respectively. The virulence scales of leaf spots, fruit rot, and twig dieback diseases of loquat were developed for the first time through this study. It is the first comprehensive study with morpho-molecular identification, and newly developed virulence scales of the fungal pathogens associated with loquat, which improves the understanding of these destructive diseases.
Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.
Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners.