Displaying publications 81 - 100 of 171 in total

Abstract:
Sort:
  1. Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al.
    Phytochem Anal, 2019 Jan;30(1):46-61.
    PMID: 30183131 DOI: 10.1002/pca.2789
    INTRODUCTION: Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage.

    OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.

    METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.

    RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50  = 190.43 ± 12.26 μg/mL, P 

    Matched MeSH terms: Metabolomics/methods*
  2. Lee SY, Mediani A, Ismail IS, Maulidiani, Abas F
    BMC Complement Altern Med, 2019 Jan 07;19(1):7.
    PMID: 30616569 DOI: 10.1186/s12906-018-2413-4
    BACKGROUND: Neptunia oleracea is a plant cultivated as vegetable in Southeast Asia. Previous works have revealed the potential of this plant as a source of natural antioxidants and α-glucosidase inhibitors. Continuing our interest on this plant, the present work is focused in identification of the bioactive compounds from different polarity fractions of N. oleracea, namely hexane (HF), chloroform (CF), ethyl acetate (EF) and methanol (MF).

    METHODS: The N. oleracea fractions were obtained using solid phase extraction (SPE). A metabolomics approach that coupled the use of proton nuclear magnetic resonance (1H NMR) with multivariate data analysis (MVDA) was applied to distinguish the metabolite variations among the N. oleracea fractions, as well as to assess the correlation between metabolite variation and the studied bioactivities (DPPH free radical scavenging and α-glucosidase inhibitory activities). The bioactive fractions were then subjected to ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis to profile and identify the potential bioactive constituents.

    RESULTS: The principal component analysis (PCA) discriminated EF and MF from the other fractions with the higher distributions of phenolics. Partial least squares (PLS) analysis revealed a strong correlation between the phenolics and the studied bioactivities in the EF and the MF. The UHPLC-MS/MS profiling of EF and MF had tentatively identified the phenolics present. Together with some non-phenolic metabolites, a total of 37 metabolites were tentatively assigned.

    CONCLUSIONS: The findings of this work supported that N. oleracea is a rich source of phenolics that can be potential antioxidants and α-glucosidase inhibitors for the management of diabetes. To our knowledge, this study is the first report on the metabolite-bioactivity correlation and UHPLC-MS/MS analysis of N. oleracea fractions.

    Matched MeSH terms: Metabolomics
  3. Afzan A, Kasim N, Ismail NH, Azmi N, Ali AM, Mat N, et al.
    Metabolomics, 2019 Mar 04;15(3):35.
    PMID: 30830457 DOI: 10.1007/s11306-019-1489-2
    BACKGROUND: Ficus deltoidea Jack (Moraceae) is a plant used in Malaysia for various diseases including as a supplement in diabetes management. Morphology distinction of the 7 main varieties (var. angustifolia, var. bilobata, var. deltoidea, var. intermedia, var. kunstleri, var. motleyana and var. trengganuensis) is challenging due to the extreme leaf heterophylly and unclear varietal boundaries, making it difficult for quality control of F. deltoidea products.

    OBJECTIVE: We aimed to compare the phytochemical composition of 7 varieties growing in different conditions at various geographical locations. We also aimed to establish the quality control markers for the authentication of these varieties.

    METHODS: We applied untargeted UHPLC-TOFMS metabolomics to discriminate 100 leaf samples of F. deltoidea collected from 6 locations in Malaysia. A genetic analysis on 21 leaf samples was also performed to validate the chemotaxonomy differentiation.

    RESULTS: The PCA and HCA analysis revealed the existence of 3 chemotypes based on the differentiation in the flavonoid content. The PLS-DA analysis identified 15 glycosylated flavone markers together with 1 furanocoumarin. These markers were always consistent for the respective varieties, regardless of the geographical locations and growing conditions. The chemotaxonomy differentiation was in agreement with the DNA sequencing. In particular, var. bilobata accession which showed divergent morphology was also differentiated by the chemical fingerprints and genotype.

    CONCLUSION: Chemotype differentiation based on the flavonoid fingerprints along with the proposed markers provide a powerful identification tool to complement morphology and genetic analyses for the quality control of raw materials and products from F. deltoidea.

    Matched MeSH terms: Metabolomics
  4. Megat Mohd Azlan PI, Chin SF, Low TY, Neoh HM, Jamal R
    Proteomics, 2019 05;19(10):e1800176.
    PMID: 30557447 DOI: 10.1002/pmic.201800176
    Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host-microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.
    Matched MeSH terms: Metabolomics
  5. Amin AM, Mostafa H, Arif NH, Abdul Kader MAS, Kah Hay Y
    Clin Chim Acta, 2019 Jun;493:112-122.
    PMID: 30826371 DOI: 10.1016/j.cca.2019.02.030
    BACKGROUND: Coronary artery disease (CAD) claims lives yearly. Nuclear magnetic resonance (1H NMR) metabolomics analysis is efficient in identifying metabolic biomarkers which lend credence to diagnosis. We aimed to identify CAD metabotypes and its implicated pathways using 1H NMR analysis.

    METHODS: We analysed plasma and urine samples of 50 stable CAD patients and 50 healthy controls using 1H NMR. Orthogonal partial least square discriminant analysis (OPLS-DA) followed by multivariate logistic regression (MVLR) models were developed to indicate the discriminating metabotypes. Metabolic pathway analysis was performed to identify the implicated pathways.

    RESULTS: Both plasma and urine OPLS-DA models had specificity, sensitivity and accuracy of 100%, 96% and 98%, respectively. Plasma MVLR model had specificity, sensitivity, accuracy and AUROC of 92%, 86%, 89% and 0.96, respectively. The MVLR model of urine had specificity, sensitivity, accuracy and AUROC of 90%, 80%, 85% and 0.92, respectively. 35 and 12 metabolites were identified in plasma and urine metabotypes, respectively. Metabolic pathway analysis revealed that urea cycle, aminoacyl-tRNA biosynthesis and synthesis and degradation of ketone bodies pathways were significantly disturbed in plasma, while methylhistidine metabolism and galactose metabolism pathways were significantly disturbed in urine. The enrichment over representation analysis against SNPs-associated-metabolite sets library revealed that 85 SNPs were significantly enriched in plasma metabotype.

    CONCLUSIONS: Cardiometabolic diseases, dysbiotic gut-microbiota and genetic variabilities are largely implicated in the pathogenesis of CAD.

    Matched MeSH terms: Metabolomics*
  6. Munirah Md Noh S, Hamimah Sheikh Abdul Kadir S, Vasudevan S
    Biomolecules, 2019 06 22;9(6).
    PMID: 31234474 DOI: 10.3390/biom9060243
    The anti-fibrotic properties of ranibizumab have been well documented. As an antagonist to vascular endothelial growth factor (VEGF), ranibizumab works by binding and neutralizing all active VEGF-A, thus limiting progressive cell growth and proliferation. Ranibizumab application in ocular diseases has shown remarkable desired effects; however, to date, its antifibrotic mechanism is not well understood. In this study, we identified metabolic changes in ranibizumab-treated human Tenon's fibroblasts (HTFs). Cultured HTFs were treated for 48 h with 0.5 mg/mL of ranibizumab and 0.5 mg/mL control IgG antibody which serves as a negative control. Samples from each group were injected into Agilent 6520 Q-TOF liquid chromatography/mass spectrometer (LC/MS) system to establish the metabolite expression in both ranibizumab treated cells and control group. Data obtained was analyzed using Agilent Mass Hunter Qualitative Analysis software to identify the most regulated metabolite following ranibizumab treatment. At p-value < 0.01 with the cut off value of two-fold change, 31 identified metabolites were found to be significantly upregulated in ranibizumab-treated group, with six of the mostly upregulated having insignificant role in fibroblast cell cycle and wound healing regulations. Meanwhile, 121 identified metabolites that were downregulated, and seven of the mostly downregulated are significantly involved in cell cycle and proliferation. Our findings suggest that ranibizumab abrogates the tissue scarring and wound healing process by regulating the expression of metabolites associated with fibrotic activity. In particular, we found that vitamin Bs are important in maintaining normal folate cycle, nucleotide synthesis, and homocysteine and spermidine metabolism. This study provides an insight into ranibizumab's mechanism of action in HTFs from the perspective of metabolomics.
    Matched MeSH terms: Metabolomics*
  7. Hashim NAA, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M
    Molecular and clinical oncology, 2019 Jul;11(1):3-14.
    PMID: 31289671 DOI: 10.3892/mco.2019.1853
    Accurate diagnosis of colorectal cancer (CRC) relies on the use of invasive tools such as colonoscopy and sigmoidoscopy. Non-invasive tools are less sensitive in detecting the disease, particularly in the early stage. A number of researchers have used metabolomics analyses on serum/plasma samples of patients with CRC compared with normal healthy individuals in an effort to identify biomarkers for CRC. The aim of the present review is to compare reported serum metabolomics profiles of CRC and to identify common metabolites affected among these studies. A literature search was performed to include any experimental studies on global metabolomics profile of CRC using serum/plasma samples published up to March 2018. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was used to assess the quality of the studies reviewed. In total, nine studies were included. The studies used various analytical platforms and were performed on different populations. A pathway enrichment analysis was performed using the data from all the studies under review. The most affected pathways identified were protein biosynthesis, urea cycle, ammonia recycling, alanine metabolism, glutathione metabolism and citric acid cycle. The metabolomics analysis revealed levels of metabolites of glycolysis, tricarboxylic acid cycle, anaerobic respiration, protein, lipid and glutathione metabolism were significantly different between cancer and control samples. Although the majority of differentiating metabolites identified were different in the different studies, there were several metabolites that were common. These metabolites include pyruvic acid, glucose, lactic acid, malic acid, fumaric acid, 3-hydroxybutyric acid, tryptophan, phenylalanine, tyrosine, creatinine and ornithine. The consistent dysregulation of these metabolites among the different studies suggest the possibility of common diagnostic biomarkers for CRC.
    Matched MeSH terms: Metabolomics
  8. Abdul-Hamid NA, Abas F, Maulidiani M, Ismail IS, Tham CL, Swarup S, et al.
    Anal Biochem, 2019 07 01;576:20-32.
    PMID: 30970239 DOI: 10.1016/j.ab.2019.04.001
    The variation in the extracellular metabolites of RAW 264.7 cells obtained from different passage numbers (passage 9, 12 and 14) was examined. The impact of different harvesting protocols (trypsinization and scraping) on recovery of intracellular metabolites was then assessed. The similarity and variation in the cell metabolome was investigated using 1H NMR metabolic profiling modeled using multivariate data analysis. The characterization and quantification of metabolites was performed to determine the passage-related and harvesting-dependent effects on impacted metabolic networks. The trypsinized RAW cells from lower passages gave higher intensities of most identified metabolites, including asparagine, serine and tryptophan. Principal component analysis revealed variation between cells from different passages and harvesting methods, as indicated by the formation of clusters in score plot. Analysis of S-plots revealed metabolites that acted as biomarkers in discriminating cells from different passages including acetate, serine, lactate and choline. Meanwhile lactate, glutamine and pyruvate served as biomarkers for differentiating trypsinized and scraped cells. In passage-dependent effects, glycolysis and TCA cycle were influential, whereas glycerophospholipid metabolism was affected by the harvesting method. Overall, it is proposed that typsinized RAW cells from lower passage numbers are more appropriate when conducting experiments related to NMR metabolomics.
    Matched MeSH terms: Metabolomics/methods*
  9. Yong WK, Sim KS, Poong SW, Wei D, Phang SM, Lim PE
    3 Biotech, 2019 Aug;9(8):315.
    PMID: 31406637 DOI: 10.1007/s13205-019-1848-8
    An ecologically important tropical freshwater microalga, Scenedesmus quadricauda, was exposed to Ni toxicity under two temperature regimes, 25 and 35 °C to investigate the interactive effects of warming and different Ni concentrations (0.1, 1.0 and 10.0 ppm). The stress responses were assessed from the growth, photosynthesis, reactive oxygen species (ROS) generation and metabolomics aspects to understand the effects at both the physiological and biochemical levels. The results showed that the cell densities of the cultures were higher at 35 °C compared to 25 °C, but decreased with increasing Ni concentrations at 35 °C. In terms of photosynthetic efficiency, the maximum quantum yield of photosystem II (Fv/Fm) of S. quadricauda remained consistent across different conditions. Nickel concentration at 10.0 ppm affected the maximum rate of relative electron transport (rETRm) and saturation irradiance for electron transport (Ek) in photosynthesis. At 25 °C, the increase of non-photochemical quenching (NPQ) values in cells exposed to 10.0 ppm Ni might indicate the onset of thermal dissipation process as a self-protection mechanism against Ni toxicity. The combination of warming and Ni toxicity induced a strong oxidative stress response in the cells. The ROS level increased significantly by 40% after exposure to 10.0 ppm of Ni at 35 °C. The amount of Ni accumulated in the biomass was higher at 25 °C compared to 35 °C. Based on the metabolic profile, temperature contributed the most significant differentiation among the samples compared to Ni treatment and the interaction between the two factors. Amino acids, sugars and organic acids were significantly regulated by the combined factors to restore homeostasis. The most affected pathways include sulphur, amino acids, and nitrogen metabolisms. Overall, the results suggest that the inhibitory effect of Ni was lower at 35 °C compared to 25 °C probably due to lower metal uptake and primary metabolism restructuring. The ability of S. quadricauda to accumulate substantial amount of Ni and thrive at 35 °C suggests the potential use of this strain for phycoremediation and outdoor wastewater treatment.
    Matched MeSH terms: Metabolomics
  10. Abdul Ghani ZDF, Ab Rashid AH, Shaari K, Chik Z
    Appl Biochem Biotechnol, 2019 Oct;189(2):690-708.
    PMID: 31111377 DOI: 10.1007/s12010-019-03042-w
    The present studies are to evaluate the ability of PB to induce weight loss and urine metabolite profile of Piper betle L. (PB) leaf extracts using metabolomics approach. Dried PB leaves were extracted with ethanol 70% and the studies were performed in different groups of rats fed with high fat (HFD) and normal diet (ND). Then, fed with the PB extract with 100, 300, and 500 mg/kg and two negative control groups given water (WTR). The body weights were monitored and evaluated. Urine was collected and 1H NMR-based metabolomics approach was used to detect the metabolite changes. Results showed that PB-treated group demonstrated inhibition of body weight gain. The trajectory of urine metabolites showed that PB-treated group gave the different distribution from week 12 to 16 compared with the control groups. In 1H NMR metabolomic approach analysis, the urine metabolites gave the best separation in principle component 1 and 3, with 40.0% and 9.56% of the total variation. Shared and unique structures (SUS) plot model showed that higher concentration PB-treated group was characterized by high level of indole-3-acetate, aspartate, methanol, histidine, and creatine, thus caused an increased the metabolic function and maintaining the body weight of the animals treated.
    Matched MeSH terms: Metabolomics*
  11. Abdul-Hamid NA, Abas F, Ismail IS, Tham CL, Maulidiani M, Mediani A, et al.
    Food Res Int, 2019 11;125:108565.
    PMID: 31554083 DOI: 10.1016/j.foodres.2019.108565
    Inflammation has been revealed to play a central role in the onset and progression of many illnesses. Nuclear magnetic resonance (NMR) based metabolomics method was adopted to evaluate the effects of Phoenix dactylifera seeds, in particular the Algerian date variety of Deglet on the metabolome of the LPS-IFN-γ-induced RAW 264.7 cells. Variations in the extracellular and intracellular profiles emphasized the differences in the presence of tyrosine, phenylalanine, alanine, proline, asparagine, isocitrate, inosine and lysine. Principal component analysis (PCA) revealed noticeable clustering patterns between the treated and induced RAW cells based on the metabolic profile of the extracellular metabolites. However, the effects of treatment on the intracellular metabolites appears to be less distinct as suggested by the PCA and heatmap analyses. A clear group segregation was observed for the intracellular metabolites from the treated and induced cells based on the orthogonal partial least squares-discriminant analysis (OPLS-DA) score plot. Likewise, 11 of the metabolites in the treated cells were significantly different from those in the induced groups, including amino acids and succinate. The enrichment analysis demonstrated that treatment with Deglet seed extracts interfered with the energy and of amino acids metabolism. Overall, the obtained data reinforced the possible application of Deglet seeds as a functional food with anti-inflammatory properties.
    Matched MeSH terms: Metabolomics/methods*
  12. Tajidin NE, Shaari K, Maulidiani M, Salleh NS, Ketaren BR, Mohamad M
    Sci Rep, 2019 11 14;9(1):16766.
    PMID: 31727911 DOI: 10.1038/s41598-019-52905-z
    Andrographis paniculata (Burm. F.) Nees. is considered as the herb of the future due to its precious chemical compounds, andrographolide (ANDRO), neoandrographolide (NAG) and 14-deoxyandrographolide (DAG). This study aims to profile the metabolites in young and mature leaf at six different harvest ages using 1HNMR-based metabolomics combined with multivariate data analysis. Principal component analysis (PCA) indicated noticeable and clear discrimination between young and mature leaves. A comparison of the leaves stage indicated that young leaves were separated from mature leaves due to its larger quantity of ANDRO, NAG, DAG, glucose and sucrose. These similar metabolites are also responsible for the PCA separation into five clusters representing the harvest age at 14, 16, 18, 20, 22 weeks of leaves extract. Loading plots revealed that most of the ANDRO and NAG signals were present when the plant reached at the pre-flowering stage or 18 weeks after sowing (WAS). As a conclusion, A. paniculata young leaves at pre-flowering harvest age were found to be richer in ANDRO, NAG and DAG compared to mature leaves while glucose and choline increased with harvest age. Therefore, young leaves of A. paniculata should be harvested at 18 WAS in order to produce superior quality plant extracts for further applications by the herbal, nutraceutical and pharmaceutical industries.
    Matched MeSH terms: Metabolomics/methods*
  13. Fan X, Matsumoto H, Wang Y, Hu Y, Liu Y, Fang H, et al.
    Environ Sci Technol, 2019 Nov 19;53(22):13042-13052.
    PMID: 31631659 DOI: 10.1021/acs.est.9b04616
    Rice fungal pathogens, responsible for severe rice yield loss and biotoxin contamination, cause increasing concerns on environmental safety and public health. In the paddy environment, we observed that the asymptomatic rice phyllosphere microenvironment was dominated by an indigenous fungus, Aspergillus cvjetkovicii, which positively correlated with alleviated incidence of Magnaporthe oryzae, one of the most aggressive plant pathogens. Through the comparative metabolic profiling for the rice phyllosphere microenvironment, two metabolites were assigned as exclusively enriched metabolic markers in the asymptomatic phyllosphere and increased remarkably in a population-dependent manner with A. cvjetkovicii. These two metabolites evidenced to be produced by A. cvjetkovicii in either a phyllosphere microenvironment or artificial media were purified and identified as 2(3H)-benzofuranone and azulene, respectively, by gas chromatography coupled to triple quadrupole mass spectrometry and nuclear magnetic resonance analyses. Combining with bioassay analysis in vivo and in vitro, we found that 2(3H)-benzofuranone and azulene exerted dissimilar actions at the stage of infection-related development of M. oryzae. A. cvjetkovicii produced 2(3H)-benzofuranone at the early stage to suppress MoPer1 gene expression, leading to inhibited mycelial growth, while azulene produced lately was involved in blocking of appressorium formation by downregulation of MgRac1. More profoundly, the microenvironmental interplay dominated by A. cvjetkovicii significantly blocked M. oryzae epidemics in the paddy environment from 54.7 to 68.5% (p < 0.05). Our study first demonstrated implication of the microenvironmental interplay dominated by indigenous and beneficial fungus to ecological balance and safety of the paddy environment.
    Matched MeSH terms: Metabolomics
  14. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Metabolomics
  15. Marina Mohd Bakri
    MyJurnal
    Over the past decade, research involving immunometabolism, has been gaining much interest. The immune cell re-sponses of an individual may be influenced by metabolites released by the host or derived from the microbiota. How-ever, the immune response of an individual may vary depending on the health condition of an individual. During infection, the metabolic processes derived from the infectious diseases can effect the function of immune cells and thus determine the response or survival of the host during infection. Immunometabolism also has a role in tumor development although the mechanism of how tumor cells influence immune cell function is not well understood. Among the major meatbolic pathways that have been studied in immune cells include glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism. Understanding the tight connection between metabolomics and immunity in health and disease will be crucial as this could lead to therapeutic interventions or in developing metabolomic biomarkers in immunology.
    Matched MeSH terms: Metabolomics
  16. Lin X, Liu X, Xu J, Cheng KK, Cao J, Liu T, et al.
    Chin Med, 2019;14:18.
    PMID: 31080495 DOI: 10.1186/s13020-019-0240-2
    Background: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM.

    Methods: Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment.

    Results: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes.

    Conclusions: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention.

    Matched MeSH terms: Metabolomics
  17. Contreras-Jodar A, Nayan NH, Hamzaoui S, Caja G, Salama AAK
    PLoS One, 2019;14(2):e0202457.
    PMID: 30735497 DOI: 10.1371/journal.pone.0202457
    The aim of the study is to identify the candidate biomarkers of heat stress (HS) in the urine of lactating dairy goats through the application of proton Nuclear Magnetic Resonance (1H NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation were submitted to thermal neutral (TN; indoors; 15 to 20°C; 40 to 45% humidity) or HS (climatic chamber; 37°C day, 30°C night; 40% humidity) conditions according to a crossover design (2 periods of 21 days). Thermophysiological traits and lactational performances were recorded and milk composition analyzed during each period. Urine samples were collected at day 15 of each period for 1H NMR spectroscopy analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) assessment with cross validation were used to identify the goat urinary metabolome from the Human Metabolome Data Base. HS increased rectal temperature (1.2°C), respiratory rate (3.5-fold) and water intake (74%), but decreased feed intake (35%) and body weight (5%) of the lactating does. No differences were detected in milk yield, but HS decreased the milk contents of fat (9%), protein (16%) and lactose (5%). Metabolomics allowed separating TN and HS urinary clusters by PLS-DA. Most discriminating metabolites were hippurate and other phenylalanine (Phe) derivative compounds, which increased in HS vs. TN does. The greater excretion of these gut-derived toxic compounds indicated that HS induced a harmful gastrointestinal microbiota overgrowth, which should have sequestered aromatic amino acids for their metabolism and decreased the synthesis of neurotransmitters and thyroid hormones, with a negative impact on milk yield and composition. In conclusion, HS markedly changed the thermophysiological traits and lactational performances of dairy goats, which were translated into their urinary metabolomic profile through the presence of gut-derived toxic compounds. Hippurate and other Phe-derivative compounds are suggested as urinary biomarkers to detect heat-stressed dairy animals in practice.
    Matched MeSH terms: Metabolomics
  18. Tan DC, Kassim NK, Ismail IS, Hamid M, Ahamad Bustamam MS
    Biomed Res Int, 2019;2019:7603125.
    PMID: 31275982 DOI: 10.1155/2019/7603125
    Paederia foetida L. (Rubiaceae) is a climber which is widely distributed in Asian countries including Malaysia. The plant is traditionally used to treat various diseases including diabetes. This study is to evaluate the enzymatic inhibition activity of Paederia foetida twigs extracts and to identify the metabolites responsible for the bioactivity by gas chromatography-mass spectrometry (GC-MS) metabolomics profiling. Three different twig extracts, namely, hexane (PFH), chloroform (PFC), and methanol (PFM), were submerged for their α-amylase and α-glucosidase inhibition potential in 5 replicates for each. Results obtained from the loading column scatter plot of orthogonal partial least square (OPLS) model revealed the presence of 12 bioactive compounds, namely, dl-α-tocopherol, n-hexadecanoic acid, 2-hexyl-1-decanol, stigmastanol, 2-nonadecanone, cholest-8(14)-en-3-ol, 4,4-dimethyl-, (3β,5α)-, stigmast-4-en-3-one, stigmasterol, 1-ethyl-1-tetradecyloxy-1-silacyclohexane, ɣ-sitosterol, stigmast-7-en-3-ol, (3β,5α,24S)-, and α-monostearin. In silico molecular docking was carried out using the crystal structure α-amylase (PDB ID: 4W93) and α-glucosidase (PDB ID: 3WY1). α-Amylase-n-hexadecanoic acid exhibited the lowest binding energy of -2.28 kcal/mol with two hydrogen bonds residue, namely, LYS178 and TYR174, along with hydrophobic interactions involving PRO140, TRP134, SER132, ASP135, and LYS172. The binding interactions of α-glucosidase-n-hexadecanoic acid complex ligand also showed the lowest binding energy among 5 major compounds with the energy value of -4.04 kcal/mol. The complex consists of one hydrogen bond interacting residue, ARG437, and hydrophobic interactions with ALA444, ASP141, GLN438, GLU432, GLY374, LEU373, LEU433, LYS352, PRO347, THR445, HIS348, and PRO351. The study provides informative data on the potential antidiabetic inhibitors identified in Paederia foetida twigs, indicating the plant has the therapeutic effect properties to manage diabetes.
    Matched MeSH terms: Metabolomics*
  19. Ezzat SM, Ezzat MI, Okba MM, Hassan SM, Alkorashy AI, Karar MM, et al.
    PMID: 31275418 DOI: 10.1155/2019/7543460
    Eurycoma longifolia Jack (Fam.: Simaroubaceae), known as Tongkat Ali (TA), has been known as a symbol of virility and sexual power for men. Metabolic profiling of the aqueous extract of E. longifolia (AEEL) using UPLC-MS/MS in both positive and negative modes allowed the identification of seventeen metabolites. The identified compounds were classified into four groups: quassinoids, alkaloids, triterpenes, and biphenylneolignans. AEEL is considered safe with oral LD50 cut-off >5000 mg/kg. Oral administration of 50, 100, 200, 400, or 800 mg/kg of AEEL for 10 consecutive days to Sprague-Dawley male rats caused significant reductions in mounting, intromission, and ejaculation latencies and increased penile erection index. AEEL increased total body weight and relative weights of seminal vesicles and prostate. Total and free serum testosterone and brain cortical and hippocampal dopamine content was significantly elevated in treated groups with no significant effects on serotonin or noradrenaline content.
    Matched MeSH terms: Metabolomics
  20. Schmidt JA, Fensom GK, Rinaldi S, Scalbert A, Appleby PN, Achaintre D, et al.
    Int J Cancer, 2020 Feb 01;146(3):720-730.
    PMID: 30951192 DOI: 10.1002/ijc.32314
    Metabolomics may reveal novel insights into the etiology of prostate cancer, for which few risk factors are established. We investigated the association between patterns in baseline plasma metabolite profile and subsequent prostate cancer risk, using data from 3,057 matched case-control sets from the European Prospective Investigation into Cancer and Nutrition (EPIC). We measured 119 metabolite concentrations in plasma samples, collected on average 9.4 years before diagnosis, by mass spectrometry (AbsoluteIDQ p180 Kit, Biocrates Life Sciences AG). Metabolite patterns were identified using treelet transform, a statistical method for identification of groups of correlated metabolites. Associations of metabolite patterns with prostate cancer risk (OR1SD ) were estimated by conditional logistic regression. Supplementary analyses were conducted for metabolite patterns derived using principal component analysis and for individual metabolites. Men with metabolite profiles characterized by higher concentrations of either phosphatidylcholines or hydroxysphingomyelins (OR1SD  = 0.77, 95% confidence interval 0.66-0.89), acylcarnitines C18:1 and C18:2, glutamate, ornithine and taurine (OR1SD  = 0.72, 0.57-0.90), or lysophosphatidylcholines (OR1SD  = 0.81, 0.69-0.95) had lower risk of advanced stage prostate cancer at diagnosis, with no evidence of heterogeneity by follow-up time. Similar associations were observed for the two former patterns with aggressive disease risk (the more aggressive subset of advanced stage), while the latter pattern was inversely related to risk of prostate cancer death (OR1SD  = 0.77, 0.61-0.96). No associations were observed for prostate cancer overall or less aggressive tumor subtypes. In conclusion, metabolite patterns may be related to lower risk of more aggressive prostate tumors and prostate cancer death, and might be relevant to etiology of advanced stage prostate cancer.
    Matched MeSH terms: Metabolomics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links