Displaying publications 81 - 100 of 514 in total

Abstract:
Sort:
  1. Alhoot MA, Rathinam AK, Wang SM, Manikam R, Sekaran SD
    Int J Med Sci, 2013;10(6):719-29.
    PMID: 23630436 DOI: 10.7150/ijms.5037
    Despite the importance of DENV as a human pathogen, there is no specific treatment or protective vaccine. Successful entry into the host cells is necessary for establishing the infection. Recently, the virus entry step has become an attractive therapeutic strategy because it represents a barrier to suppress the onset of the infection. Four putative antiviral peptides were designed to target domain III of DENV-2 E protein using BioMoDroid algorithm. Two peptides showed significant inhibition of DENV when simultaneously incubated as shown by plaque formation assay, RT-qPCR, and Western blot analysis. Both DET4 and DET2 showed significant inhibition of virus entry (84.6% and 40.6% respectively) using micromolar concentrations. Furthermore, the TEM images showed that the inhibitory peptides caused structural abnormalities and alteration of the arrangement of the viral E protein, which interferes with virus binding and entry. Inhibition of DENV entry during the initial stages of infection can potentially reduce the viremia in infected humans resulting in prevention of the progression of dengue fever to the severe life-threatening infection, reduce the infected vector numbers, and thus break the transmission cycle. Moreover these peptides though designed against the conserved region in DENV-2 would have the potential to be active against all the serotypes of dengue and might be considered as Hits to begin designing and developing of more potent analogous peptides that could constitute as promising therapeutic agents for attenuating dengue infection.
    Matched MeSH terms: Peptides/administration & dosage*; Peptides/chemical synthesis; Peptides/genetics
  2. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, et al.
    Molecules, 2012 Aug 10;17(8):9631-40.
    PMID: 22885359 DOI: 10.3390/molecules17089631
    The amino acid and fatty acid composition of polypeptide k and oil isolated from the seeds of Momordica charantia was analysed. The analysis revealed polypeptide k contained 9 out of 11 essential amino acids, among a total of 18 types of amino acids. Glutamic acid, aspartic acid, arginine and glycine were the most abundant (17.08%, 9.71%, 9.50% and 8.90% of total amino acids, respectively). Fatty acid analysis showed unusually high amounts of C18-0 (stearic acid, 62.31% of total fatty acid). C18-1 (oleic acid) and C18-2 (linoleic acid) were the other major fatty acid detected (12.53% and 10.40%, respectively). The oil was devoid of the short fatty acids (C4-0 to C8-0). Polypeptide k and oil were also subjected to in vitro α-glucosidase and α-amylase inhibition assays. Both polypeptide k and seed oil showed potent inhibition of α-glucosidase enzyme (79.18% and 53.55% inhibition, respectively). α-Amylase was inhibited by 35.58% and 38.02%, respectively. Collectively, the in vitro assay strongly suggests that both polypeptide k and seed oil from Momordica charantia are potent potential hypoglycemic agents.
    Matched MeSH terms: Peptides/isolation & purification; Peptides/pharmacology*; Peptides/chemistry
  3. Tan YN, Ayob MK, Wan Yaacob WA
    Food Chem, 2013 Jan 1;136(1):279-84.
    PMID: 23017424 DOI: 10.1016/j.foodchem.2012.08.012
    Palm kernel cake (PKC), the most useful by-product resulted from palm kernel oil production. In this study, PKC-derived protein product was found suitable for use as an antimicrobial agent with potent antibacterial activity, particularly against Bacillus species, after enzymatic hydrolysis with alcalase. The hydrolysate was further purified by gel filtration chromatography. The purified fraction was found to have 14.63±0.70% (w/w) protein, a molecular mass of 2.4kDa and low hemolytic activity (<50% hemolysis of human erythrocytes at concentration of 1000μg/ml). The presence of lysine and the major component lauric acid derivative, as indicated by electrospray ionisation-mass spectrometry (ESI-MS) direct infusion and nuclear magnetic resonance (NMR) spectroscopy, may have contributed to the antibacterial effect of purified PKC fraction. This study suggests that the antibacterial PKC compound may be not a pure peptide but instead a peptide-containing compound high in lauric acid derivative.
    Matched MeSH terms: Peptides/isolation & purification*; Peptides/pharmacology; Peptides/chemistry*
  4. Muhamad A, Ho KL, Rahman MB, Uhrín D, Tan WS
    Chem Biol Drug Des, 2013 Jun;81(6):784-94.
    PMID: 23405984 DOI: 10.1111/cbdd.12120
    A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
    Matched MeSH terms: Peptides, Cyclic/chemical synthesis; Peptides, Cyclic/metabolism*; Peptides, Cyclic/chemistry
  5. Muhamad A, Ho KL, Rahman MB, Tejo BA, Uhrín D, Tan WS
    Org Biomol Chem, 2015 Jul 28;13(28):7780-9.
    PMID: 26100394 DOI: 10.1039/c5ob00449g
    Hepatitis B virus (HBV) infection remains a health problem globally despite the availability of effective vaccines. In the assembly of the infectious virion, both the preS and S regions of the HBV large surface antigen (L-HBsAg) interact synergistically with the viral core antigen (HBcAg). Peptides preS and S based on the L-HBsAg were demonstrated as potential inhibitors to block the viral assembly. Therefore, the objectives of this study were to determine the solution structures of these peptides and study their interactions with HBcAg. The solution structures of these peptides were solved using (1)H, (13)C, and (15)N NMR spectroscopy. Peptide preS has several structured regions of β-turns at Ser7-Pro8-Pro9, Arg11-Thr12-Thr13 and Ser22-Thr23-Thr24 sequences whereas peptide S has only one structured region observed at Ser3-Asn4-His5. Both peptides contain bend-like structures surrounding the turn structures. Docking studies revealed that both peptides interacted with the immunodominant region of HBcAg located at the tip of the viral capsid spikes. Saturation Transfer Difference (STD) NMR experiments identified several aromatic residues in peptides preS and S that interact with HBcAg. This study provides insights into the contact regions of L-HBsAg and HBcAg at atomic resolution which can be used to design antiviral agents that inhibit HBV morphogenesis.
    Matched MeSH terms: Peptides/isolation & purification; Peptides/pharmacology; Peptides/chemistry*
  6. Sabri MZ, Hamid AAA, Hitam SMS, Rahim MZA
    Biophys Chem, 2020 12;267:106492.
    PMID: 33035750 DOI: 10.1016/j.bpc.2020.106492
    Aptamers are oligonucleotides and peptides around 15-100 bases in length and are suitable as detection probes or as therapeutics molecules. There are growing interests in the aptamer screening approach through computational simulation methods. DNA and RNA modelling lacks of validation on their predicted 3D structures due to less number of validation tools, unlike protein structures. We suggest an approach to design the stem-loop/hairpin for the three dimensional structure of DNA aptamers through serial applications of computational prediction methods by comparing the simulated structures with the experimental data deposited in PDB Data bank, followed by MD simulations. The result shows minimal structural differences were observed between the designed and the original NMR aptamers, and the stem-loop conformational structures were also retained during the MD thus suggesting the proposed aptamers designing methods are able to synthesize a high quality molecular structure of hairpin aptamers, comparable to the NMR structures.
    Matched MeSH terms: Peptides
  7. Agyei D, Pan S, Acquah C, Bekhit AEA, Danquah MK
    J Food Biochem, 2019 01;43(1):e12482.
    PMID: 31353495 DOI: 10.1111/jfbc.12482
    Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.
    Matched MeSH terms: Peptides/analysis*; Peptides/pharmacology; Peptides/chemistry
  8. Chuin HC, Che Husna Azhari, Mohamed Aboras, Masfueh Razali, Andanastuti Muchtar
    Sains Malaysiana, 2018;47:1591-1597.
    This study aimed to improve the colloidal stability of yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP)
    suspension through colloidal processing to obtain highly translucent Y-TZP. Agglomeration is often the main complication
    in the processing of nanosized Y-TZP as it deteriorates mechanical and optical properties. Thus, colloidal processing
    is necessary to mitigate the agglomeration in Y-TZP. The colloidal stability of Y-TZP suspension plays a key role for the
    success of colloidal processing. In this study, colloidal processing was conducted at several stages, namely, dispersant
    addition, pH adjustment and sedimentation. Changes in particle size and zeta potential at various stages were recorded.
    The suspensions were then slip-casted to form green bodies. Green bodies were sintered and characterized for density
    and translucency. The results showed that dispersant addition followed by pH adjustment effectively dispersed soft
    agglomerates by introducing electrosteric stabilization, whereas sedimentation successfully segregated hard agglomerates
    and contributed excellent colloidal stability. With high colloidal stability, the translucency of Y-TZP was improved by
    approximately 30%. This study demonstrated different colloidal processing stages and proved that high colloidal stability
    and fine particle size are vital to produce highly translucent Y-TZP.
    Matched MeSH terms: Intracellular Signaling Peptides and Proteins
  9. Baba WN, Mudgil P, Kamal H, Kilari BP, Gan CY, Maqsood S
    J Dairy Sci, 2021 Feb;104(2):1364-1377.
    PMID: 33309363 DOI: 10.3168/jds.2020-19271
    This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.
    Matched MeSH terms: Peptides/metabolism; Peptides/pharmacology*; Peptides/chemistry
  10. Baharuddin A, Amir Hassan A, Othman R, Xu Y, Huang M, Ario Tejo B, et al.
    Chem Pharm Bull (Tokyo), 2014;62(10):947-55.
    PMID: 25273053
    In the efforts to find an anti-viral treatment for dengue, a simple tryptophan fluorescence-screening assay aimed at identifying dengue domain III envelope (EIII) protein inhibitors was developed. Residue Trp391 of EIII was used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residue upon binding to a peptide. The analysis was based on the electron excitation at 280 nm and fluorescence emission at 300-400 nm of EIII, followed by quenching of fluorescence in the presence of potential peptidic inhibitors coded DS36wt, DS36opt, DN58wt and DN58opt. The present study found that the fluorescence of the recombinant EIII was quenched following the binding of DS36opt, DN58wt and DN58opt in a concentration-dependent manner. Since the λmax for emission remained unchanged, the effect was not due to a change in the environment of the tryptophan side chain. In contrast, a minimal fluorescence-quenching effect of DS36wt at 20 and 40 µM suggested that the DS36wt does not have any binding ability to EIII. This was supported by a simple native-page gel retardation assay that showed a band shift of EIII domain when incubated with DS36opt, DN58wt and DN58opt but not with DS36wt. We thus developed a low-cost and convenient spectrophotometric binding assay for the analysis of EIII-peptide interactions in a drug screening application.
    Matched MeSH terms: Peptides/chemical synthesis; Peptides/metabolism; Peptides/chemistry*
  11. Monajemia, H., Daud, M.N., Zain, S.M., Wan Abdullah, W.A.T.
    ASM Science Journal, 2012;6(2):138-143.
    MyJurnal
    Finding a proper transition structure for the peptide bond formation process can lead to a better understanding of the role of the ribosome in catalyzing this reaction. A potential energy surface scan was performed on the ester bond dissociation of the P-site aminoacyl-tRNA and the peptide bond formation of P-site and A-site amino acids. The full fragment of initiator tRNAi met attached to both cognate (met) and non-cognate (ala) amino acids as the P-site substrate and the methionine as the A-site amino acid was used in this study. Due to the large size of tRNA, ONIOM calculations were used to reduce the computational cost. This study illustrated that the rate of peptide bond formation was reduced for misacylated tRNA without the presence of ribosomal bases. This demonstrated that there were indeed specific structural interactions involving the amino acid side chain within the tRNAi met.
    Matched MeSH terms: Peptides
  12. Aina, M.A., Amin, I., Raja Mohd Hafidz, R.N., Yaakob, C.M.
    MyJurnal
    The peptide composition of gelatin is known to vary very common that the electrophoretic pattern of gelatin from one source differs from another source even for the same raw material. Therefore, the present study aimed to use proteomics field to identify gelatin polypeptides biomarker for depending on the condition under which collagen is hydrolyzed. Hence, it is porcine skins. The polypeptides obtained for porcine skin gelatins can be used as reference in future to detect the origins of gelatin added in the processed food. We compared porcine skin gelatin samples obtained from three producers. Total average numbers of polypeptides of porcine skin gelatins from company A, B and C were 303 ± 2.8, 285.5 ± 3.5 and 270.5 ± 4.9 spots respectively. 10 biomarkers were identified and presented in all different companies. We also did a mixture of porcine and bovine skin gelatin to detect the presence of these 10 biomarkers. The level of adulteration that could be detected was as low as 1.0% w/w
    Matched MeSH terms: Peptides
  13. Jindal MH, Le CF, Mohd Yusof MY, Sekaran SD
    JUMMEC, 2014;17(1):1-7.
    MyJurnal
    Antimicrobial peptides (AMPs) have gained increasing attention as a potential candidate in the development of novel antimicrobial agent. Designing AMPs with enhanced antimicrobial activity while reducing the cell toxicity level is desired especially against the antibiotic-resistant microbes. Various approaches towards the design of AMPs have been described and physicochemical properties of AMPs represent the primary factors determining the antimicrobial potency of AMPs. The most common parameters include net charge and hydrophobicity, which greatly influence the antimicrobial activity of AMPs. Moreover, certain amino acids would have critical importance in affecting the antimicrobial activity as well as cell cytotoxicity of AMPS. In this review, net charge, hydrophobicity, and specific amino acid residues were discussed as factors contributing to the antimicrobial activity of AMPs.
    Matched MeSH terms: Peptides
  14. Teo CY, Tejo BA, Leow ATC, Salleh AB, Abdul Rahman MB
    Chem Biol Drug Des, 2017 Dec;90(6):1134-1146.
    PMID: 28581157 DOI: 10.1111/cbdd.13033
    Protein arginine deiminase type IV (PAD4) is responsible for the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullinated protein is the autoantigen in rheumatoid arthritis, and therefore, PAD4 is currently a promising therapeutic target for the disease. Recently, we reported the importance of the furan ring in the structure of PAD4 inhibitors. In this study, the furan ring was incorporated into peptides to act as the "warhead" of the inhibitors for PAD4. IC50 studies showed that the furan-containing peptide-based inhibitors were able to inhibit PAD4 to a better extent than the furan-containing small molecules that were previously reported. The best peptide-based inhibitor inhibited PAD4 reversibly and competitively with an IC50 value of 243.2 ± 2.4 μm. NMR spectroscopy and NMR-restrained molecular dynamic simulations revealed that the peptide-based inhibitor had a random structure. Molecular docking studies showed that the peptide-based inhibitor entered the binding site and interacted with the essential amino acids involved in the catalytic activity. The peptide-based inhibitor could be further developed into a therapeutic drug for rheumatoid arthritis.
    Matched MeSH terms: Peptides/chemical synthesis; Peptides/metabolism; Peptides/chemistry*
  15. Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi K, Hashimoto M, et al.
    J Antibiot (Tokyo), 2017 Jan;70(1):45-51.
    PMID: 27599768 DOI: 10.1038/ja.2016.107
    The novel antifungal agent ASP2397 (Vical's compound ID VL-2397) is produced by the fungal strain MF-347833 that was isolated from Malaysian leaf litter and is identified here as an Acremonium species based on its morphology, physiological properties and 28S ribosomal DNA sequence. Because of its potential importance for producing novel antifungal agents, we determined the taxonomic and biologic properties of MF-347833. We show here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore. However, ASP2397 differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins. To understand the relationship between chemical structure and biological function, we isolated certain ASP2397 derivatives from the culture broth, and we further chemically converted the metal-free form to other derivatives.
    Matched MeSH terms: Peptides, Cyclic/isolation & purification; Peptides, Cyclic/pharmacology*; Peptides, Cyclic/chemistry
  16. AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F
    Pharmacol Res, 2018 02;128:288-305.
    PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011
    Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
    Matched MeSH terms: Antimicrobial Cationic Peptides/pharmacology; Antimicrobial Cationic Peptides/therapeutic use*; Antimicrobial Cationic Peptides/chemistry
  17. Evaristus NA, Wan Abdullah WN, Gan CY
    Peptides, 2018 04;102:61-67.
    PMID: 29510154 DOI: 10.1016/j.peptides.2018.03.001
    The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity.
    Matched MeSH terms: Peptides/isolation & purification; Peptides/pharmacology; Peptides/chemistry*
  18. Tan LT, Chan KG, Pusparajah P, Lee WL, Chuah LH, Khan TM, et al.
    Front Pharmacol, 2017;8:12.
    PMID: 28167913 DOI: 10.3389/fphar.2017.00012
    Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy.
    Matched MeSH terms: Peptides
  19. Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, et al.
    Int J Biol Macromol, 2023 Mar 15;231:123248.
    PMID: 36642356 DOI: 10.1016/j.ijbiomac.2023.123248
    Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
    Matched MeSH terms: Peptides
  20. Lim HJ, Saha T, Ooi CW
    Talanta, 2024 Feb 01;268(Pt 2):125376.
    PMID: 37951180 DOI: 10.1016/j.talanta.2023.125376
    Serum levels of dengue virus (DENV) non-structural 1 (NS1) antigen can serve as a valuable prognostic indicator of severe dengue infections. A quartz crystal microbalance (QCM)-based biosensor with a biomimetic recognition element was designed to quantitatively detect DENV NS1 as an early disease biomarker. To mitigate the reliance on costly viral antigens during the molecular imprinting process, a synthetic peptide mimicking a DENV NS1 epitope was used as a surrogate template for the synthesis of an epitope-imprinted polydopamine (EMIPDA) sensing film on the biosensor surface. The maximal frequency shift for DENV NS1 was obtained with an EMIPDA film synthesised using 5 mg mL-1 of dopamine monomer and 0.5 mg mL-1 of peptide template. The EMIPDA-QCM biosensor achieved low detection and quantitation limits of 0.091 μg mL-1 and 0.436 μg mL-1, respectively, allowing acute-phase detection of dengue and prognosis of the disease progression. The EMIPDA-QCM biosensor exhibited remarkable selectivity with up to 68-fold larger frequency responses towards DENV NS1 compared to a major serum protein. The site-specific imprinting approach not only enhanced the biosensing performance but also enabled a 26-fold cost reduction for biosensor functionalisation, providing a cost-effective strategy for label-free biosensing of the dengue biomarker via the biopolymer film.
    Matched MeSH terms: Peptides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links