METHODS: Female Sprague-Dawley rats were allocated into four groups (n = 8) as follows: (i) the Normal Control group (NC), (ii) the BPA-exposed group (PC), (iii) the group concurrently treated with BPA and F. deltoidea (FC) and (iv) the group treated with F. deltoidea alone (F).
RESULTS: After 6 weeks of concurrent treatment with F. deltoidea, uterine abnormalities in the BPA-exposed rats showed a significant improvement. Specifically, the size of stromal cells increased; interstitial spaces between stromal cells expanded; the histology of the glandular epithelium and the myometrium appeared normal and mitotic figures were present. The suppressive effects of BPA on the expression levels of sex steroid receptors (ERα and ERβ) and the immunity gene C3 were significantly normalised by F. deltoidea treatment. The role of F. deltoidea as an antioxidant agent was proven by the significant reduction in malondialdehyde level in BPA-exposed rats. Moreover, in BPA-exposed rats, concurrent treatment with F. deltoidea could normalise the level of the gonadotropin hormone, which could be associated with an increase in the percentage of rats with a normal oestrous cycle.
CONCLUSION: F. deltoidea has the potential to counter the toxic effects of BPA on the female reproductive system. These protective effects might be due to the phytochemical properties of F. deltoidea. Therefore, future study is warranted to identify the bioactive components that contribute to the protective effects of F. deltoidea.
MATERIALS AND METHODS: In hepatoprotective activity, liver damage was induced by treating rats with 1.0 mL carbon tetrachloride (CCl4)/kg and MEA extract was administered at a dose of 50, 250 and 500 mg/kg 24 h before intoxication with CCl4. Cytotoxicity study was performed on MCF-7 (human breast cancer), DBTRG (human glioblastoma), PC-3 (human prostate cancer) and U2OS (human osteosarcoma) cell lines. 1H, 13C-NMR (nuclear magnetic resonance), and IR (infrared) spectral analyses were also conducted for MEA extract.
RESULTS: In hepatoprotective activity evaluation, MEA extract at a higher dose level of 500 mg/kg showed significant (p<0.05) potency. In cytotoxicity study, MEA extract was more toxic towards MCF-7 and DBTRG cell lines causing 78.7% and 64.3% cell death, respectively. MEA extract in 1H, 13C-NMR, and IR spectra exhibited bands, signals and J (coupling constant) values representing aromatic/phenolic constituents.
CONCLUSIONS: From the results, it could be concluded that MEA extract has potency to inhibit hepatotoxicity and MCF-7 and DBTRG cancer cell lines which might be due to the phenolic compounds depicted from NMR and IR spectra.
METHOD: Antioxidant activities were determined. Phytochemical analysis was performed by gas chromatography mass spectrometry (GCMS). In the in vivo study, Sprague Dawley rats were pretreated with C. nudiflora (150, 300, and 450 mg kg body weight (b.wt.)) once daily for 14 days followed by two doses of CCl4 (1 ml/kg b.wt.). After 2 weeks, the rats were sacrificed and hepatoprotective analysis was performed.
RESULTS: In vitro studies have shown that the extract possessed strong antioxidant activity and has ability to scavenge 2,2-diphenyl-2-picrylhydrazyl-free radicals effectively. GCMS analysis of the C. nudiflora extract revealed the presence of various bioactive compounds. Administration of C. nudiflora significantly reduced the impact of CCl4 toxicity on serum markers of liver damage, serum aspartate transaminase (AST), and alanine transaminase (ALT). C. nudiflora also increased antioxidant levels of hepatic glutathione (GSH) and antioxidant enzymes and ameliorated the elevated hepatic formation of malondialdehyde (MDA) induced by CCl4 in rats. Histopathological examination indicated that C. nudiflora protect the liver from the toxic effect of CCl4 and healed lesions such as necrosis, fatty degeneration, and hepatocyte injury as irregular lamellar organization and dilations in the endoplasmic reticulum. The immunohistochemical studies revealed that pretreatment of C. nudiflora decreased the formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Furthermore, overexpression of the proinflammatory cytokines TNF-α, IL-6, and prostaglandin E2 is also reduced.
CONCLUSION: These findings exhibited the potential prospect of C. nudiflora as functional ingredients to prevent ROS-related liver damage.
EXPERIMENTAL APPROACH: We compared the ability of fully charged (QX-FL) and neutral (NU-FL) derivatives of flecainide to block individual recombinant human RyR2 channels incorporated into planar phospholipid bilayers, and their effects on the properties of Ca(2) (+) sparks in intact adult rat cardiac myocytes.
KEY RESULTS: Both QX-FL and NU-FL were partial blockers of the non-physiological cytosolic to luminal flux of cations through RyR2 channels but were significantly less effective than flecainide. None of the compounds influenced the physiologically relevant luminal to cytosol cation flux through RyR2 channels. Intracellular flecainide or QX-FL, but not NU-FL, reduced Ca(2) (+) spark frequency.
CONCLUSIONS AND IMPLICATIONS: Given its inability to block physiologically relevant cation flux through RyR2 channels, and its lack of efficacy in blocking the cytosolic-to-luminal current, the effect of QX-FL on Ca(2) (+) sparks is likely, by analogy with flecainide, to result from Na(+) channel block. Our data reveal important differences in the interaction of flecainide with sites in the cytosolic vestibules of Na(+) and RyR2 channels.