Displaying publications 1001 - 1020 of 9211 in total

Abstract:
Sort:
  1. Perumal K, Mun KS, Yap NY, Razack AHA, Gobe GC, Ong TA, et al.
    Biomed Res Int, 2020;2020:3682086.
    PMID: 32802842 DOI: 10.1155/2020/3682086
    Background: The mechanisms that link obesity and cancer development are not well-defined. Investigation of leptin and leptin receptor expressions may help define some of the mechanisms. These proteins are known for associating with the immune response, angiogenesis and, signalling pathways such as JAK2/STAT3, PI3K, and AKT pathways. Tissue proteins can be easily detected with immunohistochemistry (IHC), a technique widely used both in diagnostic and research laboratories. The identification of altered levels of leptin and leptin receptor proteins in tumour tissues may lead to targeted treatment for cancer.

    Objective: The objective of this study was to use IHC to compare leptin and leptin receptor expressions in clear cell renal cell carcinomas (ccRCC) in non-obese and obese patients to determine the association between these proteins with the clinicopathological features and prognosis of ccRCC. Patients and Methods. The study involved 60 patients who underwent nephrectomy of which 34 were obese, as assessed using body mass index (BMI). Nephrectomy samples provided tissues of ccRCC and adjacent non-cancerous kidney. The intensity and localization of leptin and leptin receptor protein expressions were evaluated using IHC and correlated with clinicopathological features and clinical outcomes. Aperio ImageScope morphometry and digital pathology were applied to assess the IHC results. The chi-square test was used to determine if there was any significant association between the proteins and the clinicopathological features. The Kaplan-Meier test was used to determine the overall survival, disease-free survival, and recurrence-free survival. A value of p < 0.05 was considered significant.

    Results: There was neither significant difference in the overall cellular and nuclear expressions of leptin and leptin receptor between non-cancerous kidney and ccRCC tissues nor in non-obese and obese individuals with ccRCC.

    Conclusion: In this present study, it was revealed that leptin and leptin receptor were not associated with tumour characteristics and progression of ccRCC patients. Interestingly, nuclear expression of leptin was significantly associated with overall survival. However, the significance of these proteins as biomarkers in other RCC histotypes is still unclear.

    Matched MeSH terms: Carcinoma, Renal Cell/metabolism*; Kidney Neoplasms/metabolism*; Obesity/metabolism*; Biomarkers, Tumor/metabolism; Leptin/metabolism; Receptors, Leptin/metabolism
  2. Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A
    Water Res, 2014 Nov 01;64:102-112.
    PMID: 25046374 DOI: 10.1016/j.watres.2014.06.038
    The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR sludge best and allows it not only to outcompete other Accumulibacter clades but coexist with GAOs without compromising EBPR activity.
    Matched MeSH terms: Bacteria, Aerobic/metabolism; Bacteria, Anaerobic/metabolism; Phosphorus/metabolism*; RNA, Ribosomal, 16S/metabolism; Phosphotransferases (Phosphate Group Acceptor)/metabolism; Proteobacteria/metabolism
  3. Chai SJ, Ahmad Zabidi MM, Gan SP, Rajadurai P, Lim PVH, Ng CC, et al.
    Dis Markers, 2019;2019:3857853.
    PMID: 31236144 DOI: 10.1155/2019/3857853
    Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer prevalent in Southern China and Southeast Asia. The current knowledge on the molecular pathogenesis of NPC is still inadequate to improve disease management. Using gene expression microarrays, we have identified the four-jointed box 1 (FJX1) gene to be upregulated in primary NPC tissues relative to nonmalignant tissues. An orthologue of human FJX1, the four-jointed (fj) gene in Drosophila and Fjx1 in mouse, has reported to be associated with cancer progression pathways. However, the exact function of FJX1 in human is not well characterized. The overexpression of FJX1 mRNA was validated in primary NPC tissue samples, and the level of FJX1 protein was significantly higher in a subset of NPC tissues (42%) compared to the normal epithelium, where no expression of FJX1 was observed (p = 0.01). FJX1 is also found to be overexpressed in microarray datasets and TCGA datasets of other cancers including head and neck cancer, colorectal, and ovarian cancer. Both siRNA knockdown and overexpression experiments in NPC cell lines showed that FJX1 promotes cell proliferation, anchorage-dependent growth, and cellular invasion. Cyclin D1 and E1 mRNA levels were increased following FJX1 expression indicating that FJX1 enhances proliferation by regulating key proteins governing the cell cycle. Our data suggest that the overexpression of FJX1 contributes to a more aggressive phenotype of NPC cells and further investigations into FJX1 as a potential therapeutic target for NPC are warranted. The evaluation of FJX1 as an immunotherapy target for NPC and other cancers is currently ongoing.
    Matched MeSH terms: Carcinoma/metabolism; Epithelial Cells/metabolism; Membrane Proteins/metabolism; Nasopharyngeal Neoplasms/metabolism; Biomarkers, Tumor/metabolism; Cyclins/metabolism
  4. Aldoghachi AF, Baharudin A, Ahmad U, Chan SC, Ong TA, Yunus R, et al.
    Dis Markers, 2019;2019:3875147.
    PMID: 31636736 DOI: 10.1155/2019/3875147
    The ceramide synthase 2 (CERS2) gene has been linked to tumour recurrence and invasion in many different types of cancers including bladder cancer. In this study, the expression levels of CERS2 in bladder cancer cell lines were analysed using qRT-PCR and the protein expression in clinical bladder cancer histopathological specimens were examined via immunohistochemistry. The potential utility of CERS2 as a predictive biomarker of response to oncolytic virotherapy was assessed by correlating the CERS2 mRNA expression to IC50 values of cells treated with the Newcastle disease virus (NDV), AF2240 strain. This study demonstrates that CERS2 is differentially expressed in different types of bladder cancer cell lines and that the siRNA-mediated downregulation of the expression of CERS2 reduces the migratory potential of UMUC1 bladder cancer cells. However, there were no significant correlations between the expression levels of the CERS2 protein with bladder cancer grade/stage or between the IC50 values of cells treated with NDV and CERS2 expression. Although the utility of CERS2 expression may be limited, its potential as an antimigration cancer therapeutic should be further examined.
    Matched MeSH terms: Urinary Bladder Neoplasms/metabolism*; Membrane Proteins/metabolism*; Biomarkers, Tumor/metabolism*; Tumor Suppressor Proteins/metabolism*; RNA, Small Interfering/metabolism; Sphingosine N-Acyltransferase/metabolism*
  5. Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M
    PLoS One, 2016;11(8):e0161707.
    PMID: 27560927 DOI: 10.1371/journal.pone.0161707
    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
    Matched MeSH terms: Aldehyde Dehydrogenase/metabolism; Aldehyde Oxidoreductases/metabolism; Plant Proteins/metabolism; Sesquiterpenes/metabolism*; Plant Leaves/metabolism; Polygonum/metabolism
  6. Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, et al.
    Microbiologyopen, 2021 01;10(1):e1160.
    PMID: 33650793 DOI: 10.1002/mbo3.1160
    Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB-M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
    Matched MeSH terms: Fructose/metabolism; Galactose/metabolism; Glucose/metabolism; Glycerol/metabolism; Sucrose/metabolism; Rhodobacteraceae/metabolism*
  7. Rajendra S, Ackroyd R, Karim N, Mohan C, Ho JJ, Kutty MK
    J Clin Pathol, 2006 Sep;59(9):952-7.
    PMID: 16467164
    Human leucocyte antigen (HLA) expression is altered in oesophageal carcinomas compared with normal tissue. It is unclear, however, whether this phenotype precedes malignant transformation or results as a consequence of it.
    Matched MeSH terms: Histocompatibility Antigens Class II/metabolism*; Barrett Esophagus/metabolism*; Cell Transformation, Neoplastic/metabolism; Esophageal Neoplasms/metabolism*; Precancerous Conditions/metabolism*; Histocompatibility Antigens Class I/metabolism*
  8. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al.
    J Pharm Sci, 2017 07;106(7):1736-1751.
    PMID: 28412398 DOI: 10.1016/j.xphs.2017.03.042
    Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
    Matched MeSH terms: Emulsions/metabolism; Gels/metabolism; Oils/metabolism; Skin/metabolism; Pharmaceutical Vehicles/metabolism; Emulsifying Agents/metabolism
  9. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Jul;83(7):1964-1969.
    PMID: 29802733 DOI: 10.1111/1750-3841.14191
    Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields.
    Matched MeSH terms: Emulsions/metabolism; Phenols/metabolism; Plant Oils/metabolism*; Seeds/metabolism; Vitamin E/metabolism; Hibiscus/metabolism
  10. Yogarajah T, Ong KC, Perera D, Wong KT
    Sci Rep, 2017 07 19;7(1):5845.
    PMID: 28724943 DOI: 10.1038/s41598-017-05589-2
    Encephalomyelitis is a well-known complication of hand, foot, and mouth disease (HFMD) due to Enterovirus 71 (EV71) infection. Viral RNA/antigens could be detected in the central nervous system (CNS) neurons in fatal encephalomyelitis but the mechanisms of neuronal cell death is not clearly understood. We investigated the role of absent in melanoma 2 (AIM2) inflammasome in neuronal cell death, and its relationship to viral replication. Our transcriptomic analysis, RT-qPCR, Western blot, immunofluorescence and flow cytometry studies consistently showed AIM2 gene up-regulation and protein expression in EV-A71-infected SK-N-SH cells. Downstream AIM2-induced genes, CARD16, caspase-1 and IL-1β were also up-regulated and caspase-1 was activated to form cleaved caspase-1 p20 subunits. As evidenced by 7-AAD positivity, pyroptosis was confirmed in infected cells. Overall, these findings have a strong correlation with decreases in viral titers, copy numbers and proteins, and reduced proportions of infected cells. AIM2 and viral antigens were detected by immunohistochemistry in infected neurons in inflamed areas of the CNS in EV-A71 encephalomyelitis. In infected AIM2-knockdown cells, AIM2 and related downstream gene expressions, and pyroptosis were suppressed, resulting in significantly increased virus infection. These results support the notion that AIM2 inflammasome-mediated pyroptosis is an important mechanism of neuronal cell death and it could play an important role in limiting EV-A71 replication.
    Matched MeSH terms: Antigens/metabolism; DNA-Binding Proteins/metabolism*; Neurons/metabolism; Caspase 1/metabolism; Interleukin-1beta/metabolism; Inflammasomes/metabolism*
  11. Ng SH, Robert SD, Wan Ahmad WA, Wan Ishak WR
    Food Chem, 2017 Jul 15;227:358-368.
    PMID: 28274444 DOI: 10.1016/j.foodchem.2017.01.108
    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties.
    Matched MeSH terms: Blood Glucose/metabolism; Dietary Fiber/metabolism*; Food Additives/metabolism*; Powders/metabolism; Starch/metabolism*; Pleurotus/metabolism*
  12. Cheng CK, Bakar HA, Gollasch M, Huang Y
    Cardiovasc Drugs Ther, 2018 10;32(5):481-502.
    PMID: 30171461 DOI: 10.1007/s10557-018-6820-z
    Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
    Matched MeSH terms: Adipose Tissue/metabolism*; Blood Vessels/metabolism*; Vascular Diseases/metabolism*; Adipocytes/metabolism*; MicroRNAs/metabolism; Adipokines/metabolism*
  13. Besser K, Malyon GP, Eborall WS, Paro da Cunha G, Filgueiras JG, Dowle A, et al.
    Nat Commun, 2018 12 03;9(1):5125.
    PMID: 30510200 DOI: 10.1038/s41467-018-07575-2
    Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.
    Matched MeSH terms: Cellulose/metabolism; Hemocyanin/metabolism*; Lignin/metabolism*; Xylans/metabolism; Isopoda/metabolism; Gastrointestinal Tract/metabolism
  14. Lee MT, Chiu YT, Chiu YC, Hor CC, Lee HJ, Guerrini R, et al.
    J Biomed Sci, 2020 Jan 09;27(1):7.
    PMID: 31915019 DOI: 10.1186/s12929-019-0590-1
    BACKGROUND: Stress-induced analgesia (SIA) is an evolutionarily conserved phenomenon during stress. Neuropeptide S (NPS), orexins, substance P, glutamate and endocannabinoids are known to be involved in stress and/or SIA, however their causal links remain unclear. Here, we reveal an unprecedented sequential cascade involving these mediators in the lateral hypothalamus (LH) and ventrolateral periaqueductal gray (vlPAG) using a restraint stress-induced SIA model.

    METHODS: Male C57BL/6 mice of 8-12 week-old were subjected to intra-cerebroventricular (i.c.v.) and/or intra-vlPAG (i.pag.) microinjection of NPS, orexin-A or substance P alone or in combination with selective antagonists of NPS receptors (NPSRs), OX1 receptors (OX1Rs), NK1 receptors (NK1Rs), mGlu5 receptors (mGlu5Rs) and CB1 receptors (CB1Rs), respectively. Antinociceptive effects of these mediators were evaluated via the hot-plate test. SIA in mice was induced by a 30-min restraint stress. NPS levels in the LH and substance P levels in vlPAG homogenates were compared in restrained and unrestrained mice.

    RESULTS: NPS (i.c.v., but not i.pag.) induced antinociception. This effect was prevented by i.c.v. blockade of NPSRs. Substance P (i.pag.) and orexin-A (i.pag.) also induced antinociception. Substance P (i.pag.)-induced antinociception was prevented by i.pag. Blockade of NK1Rs, mGlu5Rs or CB1Rs. Orexin-A (i.pag.)-induced antinociception has been shown previously to be prevented by i.pag. blockade of OX1Rs or CB1Rs, and here was prevented by NK1R or mGlu5R antagonist (i.pag.). NPS (i.c.v.)-induced antinociception was prevented by i.pag. blockade of OX1Rs, NK1Rs, mGlu5Rs or CB1Rs. SIA has been previously shown to be prevented by i.pag. blockade of OX1Rs or CB1Rs. Here, we found that SIA was also prevented by i.c.v. blockade of NPSRs or i.pag. blockade of NK1Rs or mGlu5Rs. Restrained mice had higher levels of NPS in the LH and substance P in the vlPAG than unrestrained mice.

    CONCLUSIONS: These results suggest that, during stress, NPS is released and activates LH orexin neurons via NPSRs, releasing orexins in the vlPAG. Orexins then activate OX1Rs on substance P-containing neurons in the vlPAG to release substance P that subsequently. Activates NK1Rs on glutamatergic neurons to release glutamate. Glutamate then activates perisynaptic mGlu5Rs to initiate the endocannabinoid retrograde inhibition of GABAergic transmission in the vlPAG, leading to analgesia.

    Matched MeSH terms: Neuropeptides/metabolism*; Stress, Psychological/metabolism*; Ventral Thalamic Nuclei/metabolism*; Receptor, Cannabinoid, CB1/metabolism*; Orexin Receptors/metabolism*; Receptor, Metabotropic Glutamate 5/metabolism*
  15. Wen X, Huang J, Cao J, Xu J, Mi J, Wang Y, et al.
    Ecotoxicol Environ Saf, 2020 Mar 15;191:110214.
    PMID: 31968275 DOI: 10.1016/j.ecoenv.2020.110214
    Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P  0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*; Bacteria/metabolism; Bacterial Proteins/metabolism; Doxycycline/metabolism*; Escherichia coli/metabolism; Recombinant Proteins/metabolism
  16. Reginald K, Chew FT
    Sci Rep, 2019 02 07;9(1):1556.
    PMID: 30733527 DOI: 10.1038/s41598-018-38313-9
    Der p 2 is a major dust mite allergen and >80% of mite allergic individuals have specific IgE to this allergen. Although it is well characterized in terms of allergenicity, there is still some ambiguity in terms of its biological function. Three-dimensional structural analysis of Der p 2 and its close homologues indicate the presence of a hydrophobic cavity which can potentially bind to lipid molecules. In this study, we aimed to identify the potential ligand of Der p 2. Using a liposome pulldown assay, we show that recombinant Der p 2 binds to liposomes prepared with exogenous cholesterol in a dose dependent fashion. Next, an ELISA based assay using immobilized lipids was used to study binding specificities of other lipid molecules. Cholesterol was the preferred ligand of Der p 2 among 11 different lipids tested. Two homologues of Der p 2, Der f 2 and Der f 22 also bound to cholesterol. Further, using liquid chromatography-mass spectrometry (LC-MS), we confirmed that cholesterol is the natural ligand of Der p 2. Three amino acid residues of Der p 2, V104, V106 and V110 are possible cholesterol binding sites, as alanine mutations of these residues showed a significant decrease in binding (p 
    Matched MeSH terms: Allergens/metabolism*; Cholesterol/metabolism; Liposomes/metabolism; Mites/metabolism; Antigens, Dermatophagoides/metabolism*; Arthropod Proteins/metabolism*
  17. Yang C, Li S, Li X, Li H, Li Y, Zhang C, et al.
    J Cell Mol Med, 2019 05;23(5):3549-3562.
    PMID: 30834718 DOI: 10.1111/jcmm.14254
    Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.
    Matched MeSH terms: Axons/metabolism; Motor Neurons/metabolism*; Spinal Cord/metabolism*; Transcription Factors/metabolism; Avian Proteins/metabolism; Hedgehog Proteins/metabolism
  18. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Rotimi SO, et al.
    PMID: 31339080 DOI: 10.2174/1871530319666190724114729
    BACKGROUND: Obesity is characterized by increased body fat and involves an imbalance between the synthesis and degradation of lipids.

    OBJECTIVE: The study aimed to investigate the effect of African walnuts (Tetracarpidium conophorum) on lipids storage and the regulatory enzymes of hepatic lipid metabolism in obese rats.

    METHODS: Nuts were extracted in ethanol (WE) and further separated to obtain the ethyl-acetate fraction (ET) and the residue (RES). These were administered orally to 3 groups of monosodium glutamate- obese rats (n = 6), respectively, for 6 weeks. Other groups in the study were: normal (NC), obese control (OC) and standard control (SC) which received orlistat. Hepatic total lipids, total phospholipids, triacylglycerol (TG), total cholesterol (TCHOL), 3-hydroxyl-3-methylglutaryl-CoA (HMG-CoA) reductase and paraoxonase were studied.

    RESULTS: Total lipids, TG and TCHOL which increased in OC compared to NC group, decreased. HMG-CoA reductase activity decreased in the 3 study groups relative to OC. Paraoxonase activity which decreased in OC was up-regulated, while the magnitude of hepatic cholesterol decreased from 94.32 % in OC to 52.19, 65.43 and 47.04 % with WE, ET and RES, respectively. Flavonoids, alkaloids, glycosides, tannins and saponins were detected in the nut. GC-MS analysis revealed 16, 18 and 10 volatile components in WE, ET and RES, respectively. Unsaturated fatty acids (linolenic acids: 33.33, 47.95 and 50.93 %, and α-linolenic acids: 25, 19.66 and 26.63 %) in WE, ET and RES, respectively, are the most abundant, and likely to be responsible for the observed activity.

    CONCLUSION: African walnuts can prevent hepatic lipid accumulation through reciprocal actions on HMG-CoA reductase and paraoxonase in obesity.

    Matched MeSH terms: Hydroxymethylglutaryl CoA Reductases/metabolism*; Liver/metabolism*; Obesity/metabolism*; Aryldialkylphosphatase/metabolism*; Lipid Metabolism/physiology*
  19. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA
    BMC Vet Res, 2017 Aug 18;13(1):254.
    PMID: 28821244 DOI: 10.1186/s12917-017-1159-4
    BACKGROUND: Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers.

    RESULTS: Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite.

    CONCLUSIONS: The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of Se in broiler chickens.

    Matched MeSH terms: Antioxidants/metabolism*; Chickens/metabolism; Klebsiella pneumoniae/metabolism; Enterobacter cloacae/metabolism; Stenotrophomonas maltophilia/metabolism; Selenoproteins/metabolism*
  20. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Makpol S, Damanhuri HA, et al.
    Biochem Biophys Res Commun, 2017 11 25;493(3):1356-1363.
    PMID: 28970069 DOI: 10.1016/j.bbrc.2017.09.164
    We have recently shown that age-dependent regional brain atrophy and lateral ventricle expansion may be linked with impaired cognitive and locomotor functions. However, metabolic profile transformation in different brain regions during aging is unknown. This study examined metabolic changes in the hippocampus, medial prefrontal cortex (mPFC) and striatum of middle- and late-aged Sprague-Dawley rats using ultrahigh performance liquid chromatography coupled with high-resolution accurate mass-orbitrap tandem mass spectrometry. Thirty-eight potential metabolites were altered in hippocampus, 29 in mPFC, and 14 in striatum. These alterations indicated that regional metabolic mechanisms in lated-aged rats are related to multiple pathways including glutathione, sphingolipid, tyrosine, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms in aging and provide insight for aging and health span.
    Matched MeSH terms: Corpus Striatum/metabolism*; Glutathione/metabolism; Hippocampus/metabolism*; Sphingolipids/metabolism; Tyrosine/metabolism; Prefrontal Cortex/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links