Displaying publications 101 - 120 of 136 in total

Abstract:
Sort:
  1. Kassim, S., Tahrin, R.A.A., Rusdi, N.F., Harun, N.A.
    ASM Science Journal, 2018;11(101):86-95.
    MyJurnal
    A feasible production of poly (methyl methacrylate)@alloy (gold-silver) core shell has
    been presented as candidate in enhanced detection of surface enhanced Raman scattering
    (SERS). Free emulsifier- emulsion synthesised PMMA sphere with average size of 419 nm in
    diameter were used as core material for incorporation of alloy nanoparticles (6 nm) resulting
    a core-shell structure. The fabrication of PMMA@alloy SERS substrate was successfully
    done via self-assembly thus the produced SERS substrate that comprise of unique optical
    properties combination arising from periodic core arrangement and plasmonic activity of
    alloy nanoparticles. Alloy is bimetallic nanoparticles in which the combination of silver
    (Ag) and gold (Au) present an absolutely improved light resistance as compared to single
    metal alone with great surface plasmon resonance. Morphology and elemental analysis was
    performed through scanning electron microscope (SEM) and the analysis showing species of
    both Au and Ag in single alloy nanoparticles. The alloy nanoparticles were also observed to
    homogenously coating the PMMA sphere. Surface plasmon resonance activity was maximum
    at 476 nm obtained from UV-Visible spectroscopy. High surface production was observed
    to have periodically arranged PMMA@alloy core -shell and potentially to be used as SERS
    substrate.
    Matched MeSH terms: Alloys
  2. Mahmodi H, Hashim MR, Soga T, Alrokayan S, Khan HA, Rusop M
    Materials (Basel), 2018 Nov 12;11(11).
    PMID: 30424494 DOI: 10.3390/ma11112248
    In this work, nanocrystalline Ge1-xSnx alloy formation from a rapid thermal annealed Ge/Sn/Ge multilayer has been presented. The multilayer was magnetron sputtered onto the Silicon substrate. This was followed by annealing the layers by rapid thermal annealing, at temperatures of 300 °C, 350 °C, 400 °C, and 450 °C, for 10 s. Then, the effect of thermal annealing on the morphological, structural, and optical characteristics of the synthesized Ge1-xSnx alloys were investigated. The nanocrystalline Ge1-xSnx formation was revealed by high-resolution X-ray diffraction (HR-XRD) measurements, which showed the orientation of (111). Raman results showed that phonon intensities of the Ge-Ge vibrations were improved with an increase in the annealing temperature. The results evidently showed that raising the annealing temperature led to improvements in the crystalline quality of the layers. It was demonstrated that Ge-Sn solid-phase mixing had occurred at a low temperature of 400 °C, which led to the creation of a Ge1-xSnx alloy. In addition, spectral photo-responsivity of a fabricated Ge1-xSnx metal-semiconductor-metal (MSM) photodetector exhibited its extending wavelength into the near-infrared region (820 nm).
    Matched MeSH terms: Alloys
  3. Nurul Atikah Shariff, Azman Jalar, Muhamad Izhar Sahri, Norinsan Kamil Othman
    Sains Malaysiana, 2014;43:1069-1075.
    Austenitic stainless steels of grade 304 were exposed to dry (Ar-75%CO2) and wet (Ar-75%CO2-12%H2O) environments at 700oC. This experimental setup involved horizontal tube furnace connected to CO2 gas and water vapour facilities. X-ray diffraction (XRD) technique, variable pressure-scanning electron microscope (VP-SEM) and optical microscope techniques were used to characterize the products of corrosion. The results of XRD showed that the phase of oxide layers consists of Cr2O3 and NiCr2O4 in dry CO2, meanwhile Fe2O3, Cr2O3, Fe0.56Ni0.34, Fe3O4 were identified in wet condition after 50 h. Adding 12%H2O in Ar-75%CO2 leads significantly in weight change occurred at 10 h exposure. However, after 20 h, the weight gain was decreased due to spallation of the oxide scale. The addition of water vapour accelerates the oxidation rate on the steel than that in dry condition. Morphologies and growth kinetics of these oxides vary with reaction condition. The oxidation behaviour at different times of exposure and the effect of water vapour were discussed in correlation with the microstructure of the oxides.
    Matched MeSH terms: Dental Alloys
  4. Shan L, Kadhum AAH, Al-Furjan MSH, Weng W, Gong Y, Cheng K, et al.
    Materials (Basel), 2019 Mar 10;12(5).
    PMID: 30857349 DOI: 10.3390/ma12050815
    It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous⁻stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.
    Matched MeSH terms: Alloys
  5. Nur Azida Che Lah, Muhamad Hellmy Hussin
    MyJurnal
    Titanium (Ti) and Ti-based alloys presence the most widely applied as advanced biomaterials
    in biomedical implant applications. Moreover, these alloys are known to be the most
    valuable metallic materials including spinal cord surgical treatment. It becomes an interest
    due to its advantages compared to others, including its bio compatibility and corrosion
    resistant. However, an issue arises when it comes for permanent implant application as
    the alloy has a possible toxic effect produced from chemical reaction between body fluid
    environments with alloys chemical compositions. It also relies on the performance of
    neighbouring bone tissue to integrate with the implant surface. Abnormalities usually
    happen when surrounding tissue shows poor responses and rejection of implants that would
    leads to body inflammation. These cause an increase in foreign body reaction leading to
    severe body tissue response and thus, loosening of the implant. Corrosion effects and
    biocompatibility behaviour of implantation usage also become one of the reasons of
    implant damage. Here, this paper reviews the importance of using Ti and Ti-based alloys
    in biomedical implantation, especially in orthopaedic spinal cord injury. It also reviews the
    basic aspects of corrosion effects that lead to implant mechanical damage, poor response
    of body rejection and biocompatibility behaviour of implantation usage.
    Matched MeSH terms: Alloys
  6. Fayeka M, Haseeb A, Fazal MA
    Sains Malaysiana, 2017;46:295-302.
    Sn-Ag based solder alloy seems to be a promising lead-free solder for the application on electronic assembly. The corrosion behavior of different lead free solder alloys such as Sn-3.0Ag, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu was investigated in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to characterize the samples after the tests. The results showed that the addition of 0.5 wt. % copper with Sn-3.0 Ag solder alloy led to a better corrosion resistance while lowering of Ag content from 3.0 to 1.0 wt. % decreased the resistance. Sn-3.0Ag-0.5Cu exhibits a better corrosion resistance in terms of increased charge transfer resistance and impedance values as well as the lowest capacitance. These characteristics signify its suitability for the application in electronic packaging.
    Matched MeSH terms: Alloys
  7. Farrahshaida Mohd Salleh, Abu Bakar Sulong, Muhammad Rafi Raza, Norhamidi Muhamad, Lim TF
    Sains Malaysiana, 2017;46:1651-1657.
    owder injection molding (PIM) is able to produce porous titanium alloy/hydroxyapatite composite through the space holder technique. Thermal debinding and sintering processes were the main challenges due to different properties of metal and ceramic in producing such composite. This study focused on the effect of different space holders on the physical and mechanical properties of debound and sintered porous titanium aloi/hydroxyapatite composite. The feedstock is containing of 80 wt. % of titanium alloy/hydroxyapatite with 20 wt. % of space holders such as sodium chloride (NaCl) and polymethylmethacrylate (PMMA), respectively. The binders were then removed from the injected samples by two stages of debinding; solvent and thermal debinding. The sintering was performed at three different temperatures 1100oC, 1200oC and 1300oC at a heating rate of 10oC /min and holding time of 5 h. It was found that the samples containing PMMA space holder was fractured after sintering. While, the samples containing NaCl space holder successfully formed pores and not fractured. At sintering temperature of 1300oC, the density, compressive strength and porosity volume percentages for the sintered sample containing NaCl space holder were 3.05 g/cm3, 91.7 MPa. and 11.9 vol%, respectively.
    Matched MeSH terms: Alloys
  8. Amjad M, Badshah S, Rafique AF, Adil Khattak M, Khan RU, Abdullah Harasani WI
    Materials (Basel), 2020 May 16;13(10).
    PMID: 32429420 DOI: 10.3390/ma13102299
    Implants are widely used in the human body for the replacement of affected bones. Fatigue failure is one of the serious concerns for implants. Therefore, understanding of the underlying mechanism leading to fatigue failure is important for the longevity of biomaterial implants. In this paper, the fracture toughness and fatigue crack growth of titanium alloy biomaterial Ti-27Nb has been experimentally investigated. The Ti-27Nb material is tested for fatigue crack growth in different environmental conditions representing the ambient and in vitro environments for 504 hours and 816 hours, respectively. Fractography of the tested specimen is conducted using Scanning Electron Microscope (SEM). The results of the fatigue crack growth propagation of the ambient and in vitro samples are similar in the Paris crack growth region. However, in the threshold region, the crack growth rate is higher for the Simulated Body Fluid (SBF) treated specimen. The fracture surface morphology of in vitro samples shows brittle fracture as compared to ambient specimens with significant plasticity and striations marks. It is proposed that a similar investigation may be conducted with specimens treated in SBF for prolonged periods to further ascertain the findings of this study.
    Matched MeSH terms: Alloys
  9. Tamjidy M, Baharudin BTHT, Paslar S, Matori KA, Sulaiman S, Fadaeifard F
    Materials (Basel), 2017 May 15;10(5).
    PMID: 28772893 DOI: 10.3390/ma10050533
    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
    Matched MeSH terms: Alloys
  10. Maqbool M, Tirmazi SSM, Shakoor A, Akram Z, Nazir R, Chohan AN, et al.
    Biomed Res Int, 2023;2023:1044541.
    PMID: 36845639 DOI: 10.1155/2023/1044541
    BACKGROUND: Despite of having improved endodontic file designs as well as the reinforced metal alloy file structure, intracanal endodontic file separation (EFS) is still a very problematic and worrisome dental incident, which usually occurs without any visible signs of permanent deformation. Further, there have been conflicting reports regarding the clinical significance of leaving separated files within root canals.

    AIMS: The aim of this study was to look into the current perceptions and awareness about file separation during endodontic treatment among the dental house officers (DHOs).

    MATERIALS AND METHODS: A novel validated questionnaire comprising of 15 close-ended questions was distributed anonymously via Google Forms through email to 1100 DHOs across Pakistan. The questionnaire consisted of two parts: the first component (Section I) collected demographic data and the second component (Section II) investigated the causes of EFS during root canal treatment. Following the completion of socioeconomic information, including age and gender, the DHOs were asked to answer a few questions about the various reasons for endodontic instrument fracture.

    RESULTS: A total of 800 responses were recorded, with an effective rate of 72.8%. The majority of the DHOs (p value < 0.001) perceived that endodontic instrument fracture occurred in the posterior (61.5%) and apical third of the canal (50.5%) and in older permanent dentition (67.3%), possibly due to patient anxiety (62%). Better choice of instrument (61.15%), operators' experience (95.3%), knowledge (87.5%), and proper root canal cleaning (91.1%) are believed to be the vital steps in reducing endodontic file separation/fracture. Furthermore, majority of them (p value < 0.001) perceived that stainless steel was a superior alloy for filing instruments. Manual files tend to be more prone to fractures due to repeated use than rotary files.

    CONCLUSION: This study demonstrated that young DHOs had adequate knowledge and awareness regarding the potential predisposing factors and handling techniques for EFS. This study thereby provides an evaluating tool to access the insights of the current perceptions and awareness of DHOs concerning EFS.

    Matched MeSH terms: Dental Alloys
  11. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Chromium Alloys/chemistry; Dental Alloys/chemistry
  12. Mustafa AA, Matinlinna JP, Razak AA, Hussin AS
    J Investig Clin Dent, 2015 Aug;6(3):161-9.
    PMID: 24415731 DOI: 10.1111/jicd.12083
    AIM: To evaluate in vitro the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) in experimental silane-based primers on shear bond strength of orthodontic adhesives.

    METHODS: Different volume percentages of HEMA were tested in four experimental silane-based primer solutions (additions of HEMA: 0, 5.0 vol%, 25.0 vol% and 50.0 vol%). An experimental silane blend (primer) of 1.0 vol% 3-isocyanatopropyltrimethoxysilane (ICMS) + 0.5% bis-1,2-(triethoxysilyl) ethane (BTSE) was prepared and used. The experimental primers together with the control group were applied onto acid-etched premolars for attachment of orthodontic brackets. After artificial aging by thermocycling the shear-bond strength was measured. The fractured surfaces of all specimens were examined under scanning electron microscopy (SEM) to evaluate the failure mode on the enamel surface.

    RESULTS: The experimental primers showed the highest shear-bond strength of 21.15 MPa (SD ± 2.70 MPa) and with 25 vol% showed a highly significant increase (P < 0.05) in bond strength. The SEM images showed full penetration of adhesive agents when using silane-based primers. In addition, the SEM images suggested that the predominant failure type was not necessarily the same as for the failure propagation.

    CONCLUSIONS: This preliminary study suggested that nonacidic silane-based primers with HEMA addition might be an alternative to for use as adhesion promoting primers.

    Matched MeSH terms: Dental Alloys/chemistry
  13. Mehboob H, Tarlochan F, Mehboob A, Chang SH, Ramesh S, Harun WSW, et al.
    J Mater Sci Mater Med, 2020 Aug 20;31(9):78.
    PMID: 32816091 DOI: 10.1007/s10856-020-06420-7
    The current study is proposing a design envelope for porous Ti-6Al-4V alloy femoral stems to survive under fatigue loads. Numerical computational analysis of these stems with a body-centered-cube (BCC) structure is conducted in ABAQUS. Femoral stems without shell and with various outer dense shell thicknesses (0.5, 1.0, 1.5, and 2 mm) and inner cores (porosities of 90, 77, 63, 47, 30, and 18%) are analyzed. A design space (envelope) is derived by using stem stiffnesses close to that of the femur bone, maximum fatigue stresses of 0.3σys in the porous part, and endurance limits of the dense part of the stems. The Soderberg approach is successfully employed to compute the factor of safety Nf > 1.1. Fully porous stems without dense shells are concluded to fail under fatigue load. It is thus safe to use the porous stems with a shell thickness of 1.5 and 2 mm for all porosities (18-90%), 1 mm shell with 18 and 30% porosities, and 0.5 mm shell with 18% porosity. The reduction in stress shielding was achieved by 28%. Porous stems incorporated BCC structures with dense shells and beads were successfully printed.
    Matched MeSH terms: Alloys/chemistry*
  14. Patil PG, Nimbalkar-Patil SP, Karandikar AB
    J Contemp Dent Pract, 2014 Jan 1;15(1):112-5.
    PMID: 24939276
    This case report demonstrates sequential periodontic, orthodontic and prosthodontic treatment modalities to save and restore deep horizontally fractured maxillary central incisor. The location of fracture was deep in the mucosa which reveals less than 2 mm of tooth structure to receive the crown. The procedures like surgical crown lengthening, endodontic post placement, orthodontic forced eruption, core build-up and metal-ceramic crown restoration were sequentially performed to conserve the fractured tooth. Forced eruption is preferred to surgical removal of supporting alveolar bone, since forced eruption preserves the biologic width, maintains esthetics, and at the same time exposes sound tooth structure for the placement of restorative margins.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry
  15. Buzayan MM, Ariffin YT, Yunus N
    J Prosthodont, 2013 Oct;22(7):591-5.
    PMID: 23551843 DOI: 10.1111/jopr.12036
    A method is described for the fabrication of a closed hollow bulb obturator prosthesis using a hard thermoforming splint material and heat-cured acrylic resin. The technique allowed the thickness of the thermoformed bulb to be optimized for weight reduction, while the autopolymerized seal area was covered in heat-cured acrylic resin, thus eliminating potential leakage and discoloration. This technique permits the obturator prosthesis to be processed to completion from the wax trial denture without additional laboratory investing, flasking, and processing.
    Matched MeSH terms: Chromium Alloys/chemistry
  16. Baig MR, Rajan G, Yunus N
    Gerodontology, 2012 Jun;29(2):e1140-5.
    PMID: 21615782 DOI: 10.1111/j.1741-2358.2010.00433.x
    Dental rehabilitation of a completely edentulous geriatric patient has always been a challenge to the clinician, especially in treating those with higher expectations and demands. Treatment duration and the amount of residual alveolar bone available are often important considerations when planning for dental implant-based fixed treatment for these patients. With the introduction of zygomatic implants, a graftless alternative solution has emerged for deficient maxillary bone with provision for immediate loading. This article describes the treatment of a completely edentulous elderly patient using zygomatic implants in conjunction with conventional implants. The implants were immediately loaded using a definitive acrylic resin fixed denture reinforced with a cast metal framework, to provide function and aesthetics.
    Matched MeSH terms: Chromium Alloys/chemistry
  17. Saini R, Osman NB, Ismail M, Sobri FM, Tang TH, Santhanam J
    J Investig Clin Dent, 2011 Nov;2(4):241-7.
    PMID: 25426895 DOI: 10.1111/j.2041-1626.2011.00068.x
      To determine the prevalence of human papillomavirus in the oral cavity of denture wearers.
    Matched MeSH terms: Chromium Alloys/chemistry
  18. Wahab RM, Idris H, Yacob H, Ariffin SH
    Eur J Orthod, 2012 Apr;34(2):176-81.
    PMID: 21478298 DOI: 10.1093/ejo/cjq179
    This prospective study investigated the difference in clinical efficiency between Damon™ 3 self-ligating brackets (SLB) compared with Mini Diamond conventional ligating brackets (CLBs) during tooth alignment in straightwire fixed appliance therapy. Twenty-nine patients (10 males and 19 females), aged between 14 and 30 years, were randomly divided into two groups: 14 patients received the SLB and 15 received the CLB. Upper arch impressions were taken for pre-treatment records (T(0)). A transpalatal arch was soldered to both maxillary first molar bands prior to extraction of the maxillary first premolars, followed by straightwire fixed appliances (0.022 × 0.028 inch). A 0.014 inch nickel titanium (NiTi) wire was used as the levelling and aligning archwire. Four monthly reviews were undertaken and impressions of the upper arch were taken at each appointment (T(1), T(2), T(3), and T(4)). Displacements of the teeth were determined using Little's irregularity index (LII). Data were analysed using the Mann-Whitney U-test. In the aligning stage, the CLB group showed significantly faster alignment of the teeth compared with the SLB group at the T(1)-T(2) interval (P < 0.05). However, there were no differences at T(2)-T(3), and T(3)-T(4) for either group (P > 0.05). The CLB group showed 98 per cent crowding alleviation compared with 67 per cent for the SLB after 4 months of alignment and levelling. Mini Diamond brackets aligned the teeth faster than Damon™ 3 but only during the first month. There was no difference in efficacy between the two groups in the later 3 weeks. Alleviation of crowding was faster with CLB than with SLB.
    Matched MeSH terms: Dental Alloys/chemistry
  19. Al-Makramani BMA, Razak AAA, Abu-Hassan MI
    J Prosthodont, 2008 Feb;17(2):120-124.
    PMID: 18047490 DOI: 10.1111/j.1532-849X.2007.00270.x
    PURPOSE: The current study investigated the effect of different luting agents on the fracture resistance of Procera AllCeram copings.

    METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.

    CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.

    Matched MeSH terms: Chromium Alloys/chemistry
  20. Reddy KB, Dash S, Kallepalli S, Vallikanthan S, Chakrapani N, Kalepu V
    J Contemp Dent Pract, 2013 Nov 1;14(6):1028-35.
    PMID: 24858745
    The present study was conducted to compare the cleaning efficacy (debris and smear layer removal) of hand and two NiTi rotary instrumentation systems (K3 and ProTaper).
    Matched MeSH terms: Dental Alloys/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links