Displaying publications 101 - 120 of 1712 in total

Abstract:
Sort:
  1. Salleh WMNHW, Anuar MZA, Khamis S, Nafiah MA, Sul'ain MD
    Nat Prod Res, 2021 Jul;35(13):2279-2284.
    PMID: 31544509 DOI: 10.1080/14786419.2019.1669027
    The chemical composition of the essential oil of Knema kunstleri Warb. (Myristicaceae) was investigated for the first time. The essential oil was obtained by hydrodistillation and fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 36 components were identified in the essential oil, which made up 91.7% of the total oil. The essential oil is composed mainly of β-caryophyllene (23.2%), bicyclogermacrene (9.6%), δ-cadinene (7.3%), α-humulene (5.7%), and germacrene D (4.3%). The essential oil showed moderate activity towards DPPH free-radical scavenging and lipoxygenase inhibition. To the best of our knowledge, this is the first study of the composition and bioactivities of the essential oil report concerning the genus Knema.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  2. Low TY, Syafruddin SE, Mohtar MA, Vellaichamy A, A Rahman NS, Pung YF, et al.
    Cell Mol Life Sci, 2021 Jul;78(13):5325-5339.
    PMID: 34046695 DOI: 10.1007/s00018-021-03856-0
    Protein-protein interactions are fundamental to various aspects of cell biology with many protein complexes participating in numerous fundamental biological processes such as transcription, translation and cell cycle. MS-based proteomics techniques are routinely applied for characterising the interactome, such as affinity purification coupled to mass spectrometry that has been used to selectively enrich and identify interacting partners of a bait protein. In recent years, many orthogonal MS-based techniques and approaches have surfaced including proximity-dependent labelling of neighbouring proteins, chemical cross-linking of two interacting proteins, as well as inferring PPIs from the co-behaviour of proteins such as the co-fractionating profiles and the thermal solubility profiles of proteins. This review discusses the underlying principles, advantages, limitations and experimental considerations of these emerging techniques. In addition, a brief account on how MS-based techniques are used to investigate the structural and functional properties of protein complexes, including their topology, stoichiometry, copy number and dynamics, are discussed.
    Matched MeSH terms: Chromatography, Affinity/methods*
  3. Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, et al.
    BMC Complement Med Ther, 2021 Jul 01;21(1):183.
    PMID: 34210310 DOI: 10.1186/s12906-021-03358-3
    BACKGROUND: In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation.

    METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays.

    RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples.

    CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.

    Matched MeSH terms: Chromatography, High Pressure Liquid
  4. Chua LS, Segaran A, Wong HJ
    J Chromatogr Sci, 2021 Jun 21;59(7):659-669.
    PMID: 33876232 DOI: 10.1093/chromsci/bmab041
    The objective of the study was to fractionate the crude extract of Eurycoma longifolia (E. longifolia) roots and identify the intense peaks using HPLC-PDA-MS/MS, UPLC-MS/MS and H-NMR. Column chromatography was used to fractionate the crude extract into individual fractions using six solvent systems ranged from ethyl acetate, methanol and water in increasing polarity. Two fractions with nearly pure and intense peaks were selected for compound identification. Chromenone (coumarin) and chromone derivatives were putatively identified, besides several previously reported quassinoid glycosides (eurycomanone derived glycoside, 2,3-dehydro-4α-hydroxylongilactone glucoside, eurycomanol glycoside and eurycomanol trimer) in the fraction 11 of 100% methanol. A newly reported compound, namely hydroxyl glyyunanprosapogenin D (838 g/mol) was proposed to be the compound detected in the fraction 11 of 50% ethyl acetate and 50% methanol. This is also the first study to report the identification of chromenones and chromones in E. longifolia extract.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  5. Muchtaridi M, Lestari D, Khairul Ikram NK, Gazzali AM, Hariono M, Wahab HA
    Molecules, 2021 Jun 04;26(11).
    PMID: 34199752 DOI: 10.3390/molecules26113402
    Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson's, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 μg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  6. Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA
    Int J Biol Macromol, 2021 Jun 01;180:242-251.
    PMID: 33737181 DOI: 10.1016/j.ijbiomac.2021.03.072
    Fatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids. The 1155 bp open reading frame of Δ12 fatty acid desaturase (FAD12) from Brassica napus codes for 383 amino acid residues with a molecular weight of 44 kDa. It was expressed in Escherichia coli at 37 °C in soluble and insoluble forms when induced with 0.5 mM IPTG. Soluble FAD12 has been purified using Ni2+-Sepharose affinity chromatography with a total protein yield of 0.728 mg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that desaturase activity of FAD12 could produce linoleic acid from oleic acid at a retention time of 17.6 with a conversion rate of 47%. Characterization of purified FAD12 revealed the optimal temperature of FAD12 was 50 °C with 2 mM preferred substrate concentration of oleic acid. Analysis of circular dichroism (CD) showed FAD12 was made up of 47.3% and 0.9% of alpha-helix and β-sheet secondary structures. The predicted Tm value was 50.2 °C.
    Matched MeSH terms: Chromatography, Affinity; Gas Chromatography-Mass Spectrometry
  7. Salleh WMNHW, Khamis S, Nafiah MA, Abed SA
    Nat Prod Res, 2021 Jun;35(11):1887-1892.
    PMID: 31293176 DOI: 10.1080/14786419.2019.1639183
    This study was designed to examine the chemical composition and anticholinesterase inhibitory activity of the essential oil of Pseuduvaria macrophylla (Oliv.) Merr. (Annonaceae) from Malaysia. The essential oil was obtained by hydrodistillation and fully analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The analysis led to the identification of thirty-four chemical components that represented 87.7 ± 0.5% of the total oil. The essential oil was found to be rich in germacrene D (21.1 ± 0.4%), bicyclogermacrene (10.5 ± 0.5%), δ-cadinene (5.6 ± 0.2%), α-copaene (5.1 ± 0.3%), and α-cadinol (5.0 ± 0.3%). Anticholinesterase activity was evaluated using Ellman method. The essential oil showed weak inhibitory activity against acetylcholinesterase (I%: 32.5%) and butyrylcholinesterase (I%: 35.4%) assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical and therapeutic applications of the essential oil from Pseuduvaria macrophylla.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  8. Azmi N, Othman N
    Membranes (Basel), 2021 May 21;11(6).
    PMID: 34063994 DOI: 10.3390/membranes11060376
    Amoebiasis is caused by Entamoeba histolytica and ranked second for parasitic diseases causing death after malaria. E. histolytica membrane and cytosolic proteins play important roles in the pathogenesis. Our previous study had shown several cytosolic proteins were found in the membrane fraction. Therefore, this study aimed to quantify the differential abundance of membrane and cytosolic proteins in membrane versus cytosolic fractions and analyze their predicted functions and interaction. Previous LC-ESI-MS/MS data were analyzed by PERSEUS software for the differentially abundant proteins, then they were classified into their functional annotations and the protein networks were summarized using PantherDB and STRiNG, respectively. The results showed 24 (44.4%) out of the 54 proteins that increased in abundance were membrane proteins and 30 were cytosolic proteins. Meanwhile, 45 cytosolic proteins were found to decrease in abundance. Functional analysis showed differential abundance proteins involved in the molecular function, biological process, and cellular component with 18.88%, 33.04% and, 48.07%, respectively. The STRiNG server predicted that the decreased abundance proteins had more protein-protein network interactions compared to increased abundance proteins. Overall, this study has confirmed the presence of the differentially abundant membrane and cytosolic proteins and provided the predictive functions and interactions between them.
    Matched MeSH terms: Chromatography, Liquid
  9. Oyekanmi AA, Kumar USU, H P S AK, Olaiya NG, Amirul AA, Rahman AA, et al.
    Polymers (Basel), 2021 May 20;13(10).
    PMID: 34065404 DOI: 10.3390/polym13101664
    Antimicrobial irradiated seaweed-neem biocomposite films were synthesized in this study. The storage functional properties of the films were investigated. Characterization of the prepared films was conducted using SEM, FT-IR, contact angle, and antimicrobial test. The macroscopic and microscopic including the analysis of the functional group and the gas chromatography-mass spectrometry test revealed the main active constituents present in the neem extract, which was used an essential component of the fabricated films. Neem leaves' extracts with 5% w/w concentration were incorporated into the matrix of seaweed biopolymer and the seaweed-neem bio-composite film were irradiated with different dosages of gamma radiation (0.5, 1, 1.5, and 2 kGy). The tensile, thermal, and the antimicrobial properties of the films were studied. The results revealed that the irradiated films exhibited improved functional properties compared to the control film at 1.5 kGy radiation dosage. The tensile strength, tensile modulus, and toughness exhibited by the films increased, while the elongation of the irradiated bio-composite film decreased compared to the control film. The morphology of the irradiated films demonstrated a smoother surface compared to the control and provided surface intermolecular interaction of the neem-seaweed matrix. The film indicated an optimum storage stability under ambient conditions and demonstrated no significant changes in the visual appearance. However, an increase in the moisture content was exhibited by the film, and the hydrophobic properties was retained until nine months of the storage period. The study of the films antimicrobial activities against Staphylococcus aureus (SA), and Bacillus subtilis (BS) indicated improved resistance to bacterial activities after the incorporation of neem leaves extract and gamma irradiation. The fabricated irradiated seaweed-neem bio-composite film could be used as an excellent sustainable packaging material due to its effective storage stability.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  10. Ismail NZ, Adebayo IA, Mohamad Zain NN, Arsad H
    Nat Prod Res, 2021 May 05.
    PMID: 33949277 DOI: 10.1080/14786419.2021.1919104
    Clinacanthus nutans has been reported to have many medicinal properties and it is traditionally used in treating viral lesions. This study aims to determine the molecular docking of C. nutans compounds detected by Gas Chromatography-Mass Spectrometry (GC-MS) with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 main protease) protein and its host receptor angiotensin-converting enzyme 2 (ACE2) protein using the AutoDock 4.2 tool. The drug-likeness and molecular docking analyses showed that fourteen compounds of C. nutans satisfied the Lipinski's rule of five and they exhibited good inhibitory effects against the SARS-Cov-2 main protease and ACE2 proteins. In addition, the glyceryl 2-linolenate compound was found to have the most potent binding affinities with both proteins. The results provide useful insights into the molecular inhibitory interactions of C. nutans compounds detected by GC-MS analysis with the targeted SARS-CoV-2 main protease and ACE2 protein.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  11. Show PL, Ooi CW, Song CP, Chai WS, Lin GT, Liu BL, et al.
    Food Chem, 2021 May 01;343:128543.
    PMID: 33187742 DOI: 10.1016/j.foodchem.2020.128543
    Lysozyme from crude chicken egg white (CEW) feedstock was successfully purified using a stirred fluidized bed adsorption system ion exchange chromatography where STREAMLINE SP and SP-XL high density adsorbents were selected as the adsorption carrier. The thermodynamic and kinetic studies were carried out to understand the characteristics of lysozyme adsorption by adsorbents under various conditions, including adsorption pH, temperature, lysozyme concentration and salt concentrations. Results showed that SP and SP-XL adsorbents achieved optimum lysozyme adsorption at pH 9 with capacity of ~139.77 and ~251.26 mg/mL, respectively. The optimal conditions obtained from batch studies were directly employed to operate in SFBA process. For SP-XL adsorbent, the recovery yield and purification factor of lysozyme were 93.78% and ~40 folds, respectively. For SP adsorbent, lysozyme can be eluted ~100% with purification factor of ~26 folds. These two adsorbents are highly suitable for use in direct recovery of lysozyme from crude CEW.
    Matched MeSH terms: Chromatography, Ion Exchange/methods*
  12. Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F
    Chemosphere, 2021 May;271:129525.
    PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525
    Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
    Matched MeSH terms: Chromatography, Supercritical Fluid*
  13. Semail NF, Noordin SS, Keyon ASA, Waras MN, Saad B, Kamaruzaman S, et al.
    Biomed Chromatogr, 2021 May;35(5):e5050.
    PMID: 33314228 DOI: 10.1002/bmc.5050
    A simple and sensitive preconcentration strategy using sequential electrokinetic and hydrodynamic injection modes in micellar electrokinetic chromatography with diode array detection was developed and applied for the separation and determination of anticancer agent, 5-fluorouracil and its metabolite, 5-fluoro-2'-deoxyuridine, in human plasma. Sequential injection modes with increased analyte loading capacity using the anionic pseudo-stationary phase facilitated collection of the dispersed neutral and charged analytes into narrow zones and improved sensitivity. Several important parameters affecting sample enrichment performance were evaluated and optimized in this study. Under the optimized experimental conditions, 614- and 643-fold and 782- and 803-fold sensitivity improvement were obtained for 5-fluorouracil and its metabolite when compared with normal hydrodynamic and electrokinetic injection, respectively. The method has good linearity (1-1,000 ng/ml) with acceptable coefficient of determination (r2  > 0.993), low limits of detection (0.11-0.14 ng/ml) and satisfactory analyte relative recovery (97.4-99.7%) with relative standard deviations of 4.6-9.3% (n = 6). Validation results as well as the application to analysis of human plasma samples from cancer patients demonstrate the applicability of the proposed method to clinical studies.
    Matched MeSH terms: Chromatography
  14. Mohd Yusop AY, Xiao L, Fu S
    Drug Test Anal, 2021 May;13(5):965-976.
    PMID: 32441056 DOI: 10.1002/dta.2861
    The lucrative market of herbal remedies spurs rampant adulteration, particularly with pharmaceutical drugs and their unapproved analogues. A comprehensive screening strategy is, therefore, warranted to detect these adulterants and, accordingly, to safeguard public health. This study uses the data-dependent acquisition of liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) to screen phosphodiesterase 5 (PDE5) inhibitors in herbal remedies using suspected-target and non-targeted strategies. For the suspected-target screening, we used a library comprising 95 PDE5 inhibitors. For the non-targeted screening, we adopted top-down and bottom-up approaches to flag novel PDE5 inhibitor analogues based on common fragmentation patterns. LC-QTOF-MS was optimised and validated for capsule and tablet dosage forms using 23 target analytes, selected to represent different groups of PDE5 inhibitors. The method exhibited excellent specificity and linearity with limit of detection and limit of quantification of <40 and 80 ng/mL, respectively. The accuracy ranged from 79.0% to 124.7% with a precision of <14.9% relative standard deviation. The modified, quick, easy, cheap, effective, rugged, and safe extraction provided insignificant matrix effect within -9.1%-8.0% and satisfactory extraction recovery of 71.5%-105.8%. These strategies were used to screen 52 herbal remedy samples that claimed to enhance male sexual performance. The suspected-target screening resulted in 33 positive samples, revealing 10 target analytes and 2 suspected analytes. Systematic MS and tandem MS interrogations using the non-targeted screening returned insignificant signals, indicating the absence of potentially novel analogues. The target analytes were quantified from 0.03 to 121.31 mg per dose of each sample. The proposed strategies ensure that all PDE5 inhibitors are comprehensively screened, providing a useful tool to curb the widespread adulteration of herbal remedies.
    Matched MeSH terms: Chromatography, Liquid
  15. Mohd Yusop AY, Xiao L, Fu S
    Drug Test Anal, 2021 May;13(5):953-964.
    PMID: 32959983 DOI: 10.1002/dta.2926
    The surge in the consumption of food products containing herbal aphrodisiacs has driven their widespread adulteration. A rapid screening strategy is, therefore, warranted to curb this problem. This study established an enzyme inhibition assay to screen phosphodiesterase 5 (PDE5) inhibitors as adulterants in selected food products. Fluorescein-labelled cyclic-3',5'-guanosine monophosphate was utilised as substrates for the PDE5A1 enzyme, aided by the presence of nanoparticle phosphate-binding beads on their fluorescence polarisation. The sample preparation was optimised to improve the enzyme inhibition efficiency and applied to calculate the threshold values of six blank food matrices. The assay was validated using sildenafil, producing an IC50 of 4.2 nM. The applicability of the assay procedure was demonstrated by screening 55 distinct food samples. The results were subsequently verified using confirmatory liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis. Altogether, 49 samples inhibited the PDE5 enzyme above the threshold values (75.7%-105.5%) and were registered as potentially adulterated samples. The remaining six samples were marked as nonadulterated with percentage inhibition below the threshold values (-3.3%-18.2%). The LC-HRMS analysis agreed with the assay results for all food products except for the instant coffee premix (ICP) samples. False-positive results were obtained for the ICP samples at 32% (8/25), due to possible PDE5 inhibition by caffeine. Contrarily, all other food samples were found to produce 0% (0/30) false-positive or false-negative results. The broad-based assay, established via a simple mix-incubate-read format, exhibited promising potential for high-throughput screening of PDE5 inhibitors in various food products, except those with naturally occurring phosphodiesterase inhibitors such as caffeine.
    Matched MeSH terms: Chromatography, Liquid
  16. Sari E, Mahira KF, Patel DN, Chua LS, Pratami DK, Sahlan M
    Heliyon, 2021 May;7(5):e06912.
    PMID: 34013079 DOI: 10.1016/j.heliyon.2021.e06912
    Royal jellies (RJs) possess moisturizing, emulsifying, and stabilizing properties, and several pharmacological activities have also been found to be present, which make them an ideal component for cosmetic and skin care products. However, despite the abundant efficacies, there is a lack of studies that explore the chemical composition of RJ using metabolome analysis. Furthermore, an evaluation of the chemical composition of Indonesian RJs collected from different regions has yet to be carried out. Therefore, the main objective of this study was to identify any differences in the chemical composition of such RJs. Chemical profiling was also carried out to enable more targeted utilization based on the actual compositions. Chemical profiling is also important given the rich Indonesian biodiversity and the high dependence of the RJ compositions on the botanical source. In this research, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used as part of an untargeted metabolomics approach. From the chemical profiling, >30 compounds were identified across four RJ samples. The major constituents of the samples were found to be oligosaccharides, fatty acids, and adenosine monophosphate derivatives. Meanwhile, sucrose and planteose were found to be highest in the samples from Banjarnegara and Kediri, whereas dimethyloctanoic acid was found to be unique to the sample from Banjarnegara. It was also discovered that the RJs from Demak and Tuban contained more organic fatty acids and oligosaccharides than the other samples. Although the sample from Demak demonstrated good potential for use in the cosmetic, skin care, and bio-supplement industries, the higher abundance of fatty acids and oligosaccharides in the sample from Tuban indicated that it is perhaps the most suitable RJ for use in this field.
    Matched MeSH terms: Chromatography, Liquid
  17. Amuthan A, Devi V, Shreedhara CS, Rao V, Jasphin S, Kumar N
    J Tradit Complement Med, 2021 May;11(3):279-286.
    PMID: 34012874 DOI: 10.1016/j.jtcme.2020.08.004
    Background: Traditional Siddha Medicine advises using metal-based formulations to treat cancers. In the case of any toxicities during the therapy, Siddha physicians use Vernonia cinerea (VC) whole plant kashayam (crude aqueous extract-CAE) to reverse the toxic effects.

    Aim: To evaluate the nephroprotective activity of CAE and its fractions in cisplatin-induced nephrotoxicity and to assess whether they compromise the anticancer efficacy of cisplatin.

    Materials and methods: Cisplatin-induced renal damage was induced in Ehrlich Ascites Carcinoma (EAC) bearing mice during mild phase of tumor growth. CAE and its butanol (BF) and aqueous (AF) fractions were administered orally from the 5th day for five days. Nephroprotective potential (serum urea, creatinine, renal histology) and effect of VC on cisplatin anticancer efficacy (tumor volume, viable tumor cells, percentage increase in life span (% ILS)) were calculated.

    Result: CAE and its fractions significantly reversed the cisplatin-induced renal damage. CAE and BF treated animals showed regeneration of 50%-75% of proximal tubular cells. Compared to EAC control mice, the % ILS of the cisplatin-treated group was 244% and it was further extended to 379% after CAE administration. The % ILS in the CAE treated group was 1.6 times higher than the cisplatin alone treated group. GC-MS study showed the presence of astaxanthin and betulin.

    Conclusion: CAE of VC reverses cisplatin-induced kidney damage as well as regenerates proximal tubular epithelial cells, without compromising the anticancer effect of cisplatin. When CAE was further fractionated, the nephroprotective activity was retained, but the beneficial anticancer effect of cisplatin was compromised.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  18. Lim MSW, Yang TC, Tiong TJ, Pan GT, Chong S, Yap YH
    Ultrason Sonochem, 2021 May;73:105490.
    PMID: 33609992 DOI: 10.1016/j.ultsonch.2021.105490
    Sequentially precipitated Mg-promoted nickel-silica catalysts with ageing performed under various ultrasonic intensities were employed to study the catalyst performance in the partial hydrogenation of sunflower oil. Results from various characterisation studies showed that increasing ultrasonic intensity caused a higher degree of hydroxycarbonate erosion and suppressed the formation of Ni silicates and silica support, which improved Ni dispersion, BET surface area and catalyst reducibility. Growth of silica clusters on the catalyst aggregates were observed in the absence of ultrasonication, which explained the higher silica and nickel silicate content on the outer surface of the catalyst particle. Application of ultrasound also altered the electron density of the Ni species, which led to higher activity and enhanced product selectivity for sonicated catalysts. The catalyst synthesised with ultrasonic intensity of 20.78 Wcm-2 achieved 22.6% increase in hydrogenation activity, along with 28.5% decrease in trans-C18:1 yield at IV = 70, thus supporting the feasibility of such technique.
    Matched MeSH terms: Chromatography, Gas
  19. Mohd Yusop AY, Xiao L, Fu S
    Forensic Sci Int, 2021 May;322:110748.
    PMID: 33711768 DOI: 10.1016/j.forsciint.2021.110748
    The presence of erectile dysfunction (ED) drugs in adulterated dietary supplements, mainly in pharmaceutical dosage forms, is frequently addressed in the literature. Little attention is given to food products despite their increasing adulteration trend. To address this knowledge gap targeted, suspected-target, and non-targeted strategies were utilised to analyse ED drugs and their analogues in powdered drink mix (PDM), honey, jelly, hard candy, and sugar-coated chewing gum using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The method was optimised and validated using 23 target analytes, representing different ED drugs with structural similarities. The modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction exhibited insignificant matrix effect (ME) within - 9.2-8.8% and provided complete coverage of target analytes with acceptable extraction recovery (RE) within 75.5-123.9%, except for carbodenafil in the PDM matrix. Based on the ME and RE performance, the analytical method was validated to analyse 25 food samples that claimed to enhance male sexual performance. The method exhibited good specificity and linearity with a limit of detection within 10-70 ng/mL and limit of quantification of 80 ng/mL. Similarly, the accuracy and precision were satisfactory within 77.4-122.0% and
    Matched MeSH terms: Chromatography, High Pressure Liquid
  20. M Hanif A, Bushra R, Ismail NE, Bano R, Abedin S, Alam S, et al.
    Pak J Pharm Sci, 2021 May;34(3(Supplementary)):1081-1087.
    PMID: 34602436
    The current investigation is based on efficient method development for the quantification of empagliflozin in raw and pharmaceutical dosage forms, as no pharmacopoeial method for the drug is available so far. The developed analytical method was validated as per ICH guidelines. C18 column with mobile phase (pH 4.8) consisted of 0.1% trifluoroacetic acid solution and acetonitrile (70:30 v/v) was used for drug analysis. The calibration plot showed good linear regression (r2>0.999) over the concentration of 0.025-30 μg mL-1. The LOD and LOQ were found to be 0.020 μg mL-1 and 0.061 μg mL-1, respectively. The percentage recovery was estimated between 98.0 to 100.13%. Accuracy and precision data were found to be less than 2%, indicating the suitability of method for routine analysis in pharmaceutical industries. Moreover, the drug solution was found to be stable in refrigerator and ambient room temperature with mean % accuracy of >98%. Empagliflozin contents were also tested in both the raw API and marketed tablet brands using this newly developed method. The mean assay of raw empagliflozin and tablet brands were ranged from 99.29%±1.12 to 100.95%±1.69 and 97.18%±1.59 to 98.92%±1.00 respectively. Based on these findings, the present investigated approach is suitable for quantification of empagliflozin in raw and pharmaceutical dosage forms.
    Matched MeSH terms: Chromatography, High Pressure Liquid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links