THE AIM OF THE REVIEW: The aim of this review is to summarize the current studies on ethnomedicinal practices, phytochemistry, pharmacological studies and a potential study of Acalypha indica in different locations around the world. This review updates related information regarding the potential therapeutic treatments and also discusses the toxicity issue of Acalypha indica.
MATERIALS AND METHODS: This review was performed through a systematic search related to Acalypha indica including the ethnomedicinal practices, phytochemistry and pharmacological studies around the world. The data was collected from online journals, magazines, and books, all of which were published in English, Malay and Indonesian. Search engine websites such as Google, Google Scholar, PubMed, Science Direct, Researchgate and other online collections were utilized in this review to obtain information.
RESULTS: The links between ethnomedicinal practices and scientific studies have been discussed with a fair justification. Several pharmacological properties exhibited certain potentials based on the obtained results that came from different related studies. Based on literature studies, Acalypha indica has the capability to serve as anthelmintic, anti-inflammation, anti-bacterial, anti-cancer, anti-diabetes, anti-hyperlipidemic, anti-obesity, anti-venom, hepatoprotective, hypoxia, and wound healing medicine. For the traditional practices, the authors also mentioned several benefits of consuming the raw plant and decoction.
CONCLUSION: This review summarizes the current studies of Acalypha indica collected from many regions. This review hopefully will provide a useful and basic knowledge platform for anyone interested in gaining information regarding Acalypha indica.
METHODS: Using the PRISMA 2020 Protocol, a systematic search of the publications was undertaken from the MEDLINE, CENTRAL, Science Direct, PubMed, and Google Scholars for randomized control trials published through 31st January 2022 to determine the effectiveness of Salvadora persica-extract mouthwash relative to chlorhexidine gluconate as anti-plaque and anti-gingivitis properties.
RESULTS: A total of 1809 titles and abstracts were screened. Of these, twenty-two studies met the inclusion criteria for the systematic review while only sixteen were selected for meta-analysis. The overall effects of standardized mean difference and 95% CI were 0.89 [95% CI 0.09 to 1.69] with a χ2 statistic of 2.54, 15 degrees of freedom (p
OBJECTIVE: In the present study, bioassay-guided screening technique was employed to identify the best AP extract in the management of MetS, PCa, and MetS-PCa co-disease in vitro.
METHODS: Five AP extracts by different solvent systems; APE1 (aqueous), APE2 (absolute methanol), APE3 (absolute ethanol), APE4 (40% methanol), and APE5 (60% ethanol) were screened through their phytochemical profile, in-vitro anti-cancer, anti-obese, and anti-hyperglycemic properties. The best extract was further tested for its potential in MetS-induced PCa progression.
RESULTS: APE2 contained the highest andrographolide (1.34 ± 0.05 mg/mL) and total phenolic content (8.85 ± 0.63 GAE/gDW). However, APE3 has the highest flavonoid content (11.52 ± 0.80 RE/gDW). APE2 was also a good scavenger of DPPH radicals (EC50 = 397.0 µg/mL). In cell-based assays, among all extracts, APE2 exhibited the highest antiproliferative activity (IC50 = 57.5 ± 11.8 µg/mL) on DU145 cancer cell line as well as on its migration activity. In in-vitro anti-obese study, all extracts significantly reduced lipid formation in 3T3-L1 cells. The highest insulin-sensitizing and -mimicking actions were exerted by both APE2 and APE3. Taken together, APE2 showed collectively good activity in the inhibition of PCa progression and MetS manifestation in vitro, compared to other extracts. Therefore, APE2 was further investigated for its potential to intervene DU145 progression induced with leptin (10-100 ng/mL) and adipocyte conditioned media (CM) (10% v/v). Interestingly, APE2 significantly diminished the progression of the cancer cell that has been pre-treated with leptin and CM through cell cycle arrest at S phase and induction of cell death.
CONCLUSION: In conclusion, AP extracts rich with andrographolide has the potential to be used as an alternative to ameliorate PCa progression induced by factors highly expressed in MetS.
METHODOLOGY: The research encompassed the selection of proteins from the Protein Data Bank (PDB), followed by structural refinement processes and optimization. Ligands such as Karanjin and standard drugs were retrieved from PubChem, followed by a comprehensive analysis of their ADMET profiling and pharmacokinetic properties. Protein-ligand interactions were evaluated through molecular docking using AutoDockTools 1.5.7, followed by the analysis of structural stability using coarse-grained simulations with CABS Flex 2.0. Molecular dynamics simulations were performed using Desmond 7.2 and the OPLS4 force field to explore how Karanjin interacts with proteins over 100 nanoseconds, focusing on the dynamics and structural stability.
RESULTS: Karanjin, a phytochemical from Pongamia pinnata, shows superior drug candidate potential compared to common medications, offering advantages in efficacy and reduced side effects. It adheres to drug-likeness criteria and exhibits optimal ADMET properties, including moderate solubility, high gastrointestinal absorption and blood-brain barrier penetration. Molecular docking revealed Karanjin's highest binding energy against receptor 3L2M (Pig pancreatic alpha-amylase) at -9.1 kcal/mol, indicating strong efficacy potential. Molecular dynamics simulations confirmed stable ligand-protein complexes with minor fluctuations in RMSD and RMSF, suggesting robust interactions with receptors 3L2M.
CONCLUSION: Karanjin demonstrates potential in pharmaceutical expansion for treating metabolic disorders such as diabetes, as supported by computational analysis. Prospects for Karanjin in pharmaceutical development include structural modifications for enhanced efficacy and safety. Nanoencapsulation may improve bioavailability and targeted delivery to pancreatic cells, while combination therapies could optimize treatment outcomes in diabetes management. Clinical trials and experimental studies are crucial to validate its potential as a novel therapeutic agent.
OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses.
METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days.
RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH).
CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.