A selective and sensitive reversed-phase (RP) high-performance liquid chromatographic method is developed for the quantitative analysis of five naturally occurring flavonoids of Blumea balsamifera DC, namely dihydroquercetin-7,4'-dimethyl ether (DQDE), blumeatin (BL), quercetin (QN), 5,7,3',5'-tetrahydroxyflavanone (THFE), and dihydroquercetin-4'-methyl ether (DQME). These compounds have been isolated using various chromatographic methods. The five compounds are completely separated within 35 min using an RP C18, Nucleosil column and with an isocratic methanol-0.5% phosphoric acid (50:50, v/v) mobile phase at the flow rate of 0.9 mL/min. The separation of the compounds is monitored at 285 nm using UV detection. Identifications of specific flavonoids are made by comparing their retention times with those of the standards. Reproducibility of the method is good, with coefficients of variation of 1.48% for DQME, 2.25% for THFE, 2.31% for QN, 2.23% for DQDE, and 1.51% for BL. The average recoveries of pure flavonoids upon addition to lyophilized powder and subsequent extraction are 99.8% for DQME, 99.9% for THFE, 100.0% for BL, 100.6% for DQDE, and 97.4% for QN.
From the aerial parts of Atriplex littoralis, three new flavonoid glycosides named atriplexins I-III (1-3), a known flavonoid glycoside, spinacetin 3-O-β-d-glucopyranoside (4), arbutin (5), and 4-hydroxybenzyl-β-d-glucopyranoside (6) were isolated. Their structures were elucidated on the basis of detailed spectroscopic analysis, including 1D and 2D NMR (COSY, NOESY, TOCSY, HSQC, HMBC) and HRESITOF MS data. The compounds were tested for in vitro protective effects on chromosome aberrations in peripheral human lymphocytes using a cytochalasin-B-blocked micronucleus (MN) assay in a concentration range of 0.8-7.4 μM of final culture solution. Chromosomal damage was induced by 2 Gy of γ-radiation on binucleated human lymphocytes, and the effects of the compounds were tested 2 to 19 h after irradiation. The frequency of micronuclei (MNi) was scored in binucleated cells, and the nuclear proliferation index was calculated. The highest prevention of in vitro biochemical and cytogenetic damage of human lymphocytes induced by γ-radiation was exhibited by 3 (reduction of MN frequency by 31%), followed by 4 and 6.
Artabotrys crassifolius Hook. f. & Thomson is a medicinal plant used in Malaysia. The cytotoxic effects of the hexane, chloroform and ethanol extracts of the leaves and bark were examined in vitro against MCF-7, MDA-468 and HCT-116 cells. The chloroform extract of the bark inhibited the growth of all cell lines with GI₅₀ values ranging from 4.2 µg/mL to 9.4 µg/mL. Silica gel column chromatography of this extract yielded artabotrine, liridine, atherospermidine and lysicamine. Artabotrine and lysicamine inhibited the growth of HCT-116 and MCF-7 cells with GI₅₀ values ranging from 3.3 µM to 3.9 µM. These alkaloids were not toxic to human embryonic kidney cells (HEK297) up to a concentration of 50 µg/mL.
Durio is well known as one of the sources of seasonal fruit production in Southeast Asia with its center of diversity in Borneo. Thailand, Indonesia, and Malaysia are the main Durio producers in the world. Besides having much information about the utilization and benefit from its timber and fruits as a food substance, traditionally some parts of this plant, such as leaves, bark and root, can also be used for medical purposes. This review deals with chemical constituents and the biological activities of Durio plants.
Multivariate analysis of thin-layer chromatography (TLC) images was modeled to predict antioxidant activity of Pereskia bleo leaves and to identify the contributing compounds of the activity. TLC was developed in optimized mobile phase using the 'PRISMA' optimization method and the image was then converted to wavelet signals and imported for multivariate analysis. An orthogonal partial least square (OPLS) model was developed consisting of a wavelet-converted TLC image and 2,2-diphynyl-picrylhydrazyl free radical scavenging activity of 24 different preparations of P. bleo as the x- and y-variables, respectively. The quality of the constructed OPLS model (1 + 1 + 0) with one predictive and one orthogonal component was evaluated by internal and external validity tests. The validated model was then used to identify the contributing spot from the TLC plate that was then analyzed by GC-MS after trimethylsilyl derivatization. Glycerol and amine compounds were mainly found to contribute to the antioxidant activity of the sample. An alternative method to predict the antioxidant activity of a new sample of P. bleo leaves has been developed.
Melastoma malabathricum L. (Melastomaceae) is a small shrub with various medicinal uses. The present study was carried out to determine the gastroprotective mechanisms of methanol extract of M. malabathricum leaves (MEMM) in rats.
Varied pharmacological responses have been reported for mitragynine in the literature, but no supportive scientific explanations have been given for this. These studies have been undertaken without a sufficient understanding of the physicochemical properties of mitragynine. In this work a UV spectrophotometer approach and HPLC-UV method were employed to ascertain the physicochemical properties of mitragynine. The pKa of mitragynine measured by conventional UV (8.11 ± 0.11) was in agreement with the microplate reader determination (8.08 ± 0.04). Mitragynine is a lipophilic alkaloid, as indicated by a logP value of 1.73. Mitragynine had poor solubility in water and basic media, and conversely in acidic environments, but it is acid labile. In an in vitro dissolution the total drug release was higher for the simulated gastric fluid but was prolonged and incomplete for the simulated intestinal fluid. The hydrophobicity, poor water solubility, high variability of drug release in simulated biological fluids and acid degradable characteristics of mitragynine probably explain the large variability of its pharmacological responses reported in the literature. The determined physicochemical properties of mitragynine will provide a basis for developing a suitable formulation to further improve its solubility, stability and oral absorption for better assessment of this compound in preclinical studies.
Malaria remains a global problem in the light of chloroquine-resistant strains of Plasmodium falciparum. New compounds are needed for the development of novel antimalarial drugs. Seed, leaf, and fruit skin extracts of Lansium domesticum, a common fruit tree in South-East Asia, are used by indigenous tribes in Sabah, Malaysia for treating malaria. The skin and aqueous leaf extracts of the tree were found to reduce parasite populations of the drug sensitive strain (3D7) and the chloroquine-resistant strain (T9) of P. falciparum equally well. The skin extracts were also found to interrupt the lifecycle of the parasite. The data reported here indicate that extracts of L. domesticum are a potential source for compounds with activity towards chloroquine-resistant strains of P. falciparum.
Two new biflavonoids, pyranoamentoflavone 7-methyl ether (1) and pyranoamentoflavone 4'-methyl ether (2), have been isolated from the leaves of Calophyllum venulosum. The structures of these two new compounds were elucidated by spectroscopic data.
A new iridoid glucoside with an ether linkage between C-3 and C-10 and a novel nonglycosidic iridoid with an ether linkage between C-3 and C-6 and a lactonic linkage at C-1, named macrophylloside (1) and macrophyllide (2), respectively, were isolated from the leaves of Rothmannia macrophylla, along with six known iridoids. Their structures were established by NMR and MS spectroscopies.
Six new sulfur-containing bis-iridoid glucosides, saprosmosides A-F (1-6), were isolated from the leaves of Saprosma scortechinii. From the stems of this same plant, two new iridoid glucosides, 3,4-dihydro-3-methoxypaederoside (8) and 10-O-benzoyldeacetylasperulosidic acid (12), were isolated. Their structures were elucidated by means of chemical, NMR, and mass spectroscopic methods. Additionally, 11 known iridoid glucosides were isolated and characterized as deacetylasperuloside, asperuloside, paederoside (7), deacetylasperulosidic acid (9), scandoside, asperulosidic acid, 10-acetylscandoside, paederosidic acid (10), 6-epi-paederosidic acid (11), methylpaederosidate, and monotropein. The structures of the new bis-iridoid glucosides were formed by intermolecular esterification between the glucose and carboxyl groups of three monomeric iridoid glucosides (7, 9, and 10).
Five new indole alkaloids of the ibogan type (1-5), in addition to 12 other known iboga alkaloids, were obtained from the leaf and stem-bark extract of the Malayan species Tabernaemontana corymbosa, viz., 19(S)-hydroxyibogamine (1), 19-epi-isovoacristine (2), isovoacryptine (3), 3R/S-ethoxyheyneanine (4), and 3R/S-ethoxy-19-epi-heyneanine (5). The structures were determined using NMR and MS analysis and comparison with known related compounds.
Three new indole alkaloids with methyl chanofruticosinates skeletal system, viz., methyl 12-methoxy-N1-decarbomethoxychanofruticosinate, methyl 12-methoxychanofruticosinate and methyl 11,12-dimethoxychanofruticosinate, in addition to methyl 11,12-methylenedioxy-N1-decarbomethoxychanofruticosinate, have been isolated from the leaves of Kopsia flavida Blume. The structures of these three new indole alkaloids were assigned by NMR spectral data using various 2D-techniques.
Leaf extracts of Callicarpa pentandra provided four new clerodane-type diterpenoids (1-4), of which 1, 2, and 4 have ring-A-contracted structures. Their structures and stereochemistry were established by spectral data interpretation, and for 3 also by single-crystal X-ray diffraction.
Ten new bisindole alkaloids of the vobasinyl-ibogan type, viz., conodiparines A-F (1-6), conodutarines A and B (7, 8), and cononitarines A and B (9, 10), were obtained from the leaf extract of the Malayan species Tabernaemontana corymbosa. The structures were determined using NMR and MS analysis.
Two new venalstonine derivatives, viz., venacarpines A and B, and one new dioxokopsan derivative, kopsorinine, in addition to the kopsifolines A-F, and 11 other known alkaloids, were isolated from a Malayan Kopsia species. The structures of the new alkaloids were determined using NMR and MS analysis.
Six new alkaloids, viz., alstolactone, affinisine oxindole, lagumicine, N(4)-demethylalstonerine, N(4)-demethylalstonerinal, and 10-methoxycathafoline N(4)-oxide, in addition to 36 other known alkaloids, were obtained from the leaf extract of Alstonia angustifolia var. latifolia. The structures of the new alkaloids were determined using NMR and MS analysis.
A new flavonoid, dihydroglychalcone-A, was isolated from the leaves extract of Glycosmis chlorosperma in addition to two known sulphur-containing amides, dambullin and gerambullin. The structure of the new compound was assigned as 2'-hydroxy-4,6'-dimethoxy-3',4'-(2",2"-dimethylpyrano)dihydrochalcone. The extract of the leaves was also found to exhibit antimicrobial and cytotoxic activities.
Oil palm (Elaeis guineensis) is an important economic crop cultivated for its nutritional palm oil. A significant amount of effort has been undertaken to understand oil palm growth and physiology at the molecular level, particularly in genomics and transcriptomics. Recently, proteomics studies have begun to garner interest. However, this effort is impeded by technical challenges. Plant sample preparation for proteomics analysis is plagued with technical challenges due to the presence of polysaccharides, secondary metabolites and other interfering compounds. Although protein extraction methods for plant tissues exist, none work universally on all sample types. Therefore, this study aims to compare and optimize different protein extraction protocols for use with two-dimensional gel electrophoresis of young and mature leaves from the oil palm. Four protein extraction methods were evaluated: phenol-guanidine isothiocyanate, trichloroacetic acid-acetone precipitation, sucrose and trichloroacetic acid-acetone-phenol. Of these four protocols, the trichloroacetic acid-acetone-phenol method was found to give the highest resolution and most reproducible gel. The results from this study can be used in sample preparations of oil palm tissue for proteomics work.
Different drying methods and blanching were investigated as to their effects on antioxidant and oxidase activities of Thunbergia laurifolia leaves. Results showed that oven-drying had the highest degradation of total phenolic content (TPC) and antioxidant activity at >85%, while freeze-drying had the lowest at <20%. However, inactivation of oxidase enzymes by blanching at 100°C resulted in a lesser decrease in TPC for oven-drying at 50 and 100°C (51% and 65%, respectively), indicating the importance of inactivating the oxidase enzymes for lower degradation of phenolics on drying. The high-performance liquid chromatography analysis showed that its major antioxidant, rosmarinic acid, degraded tremendously in the presence of oxidase enzymes, but only degraded slightly upon inactivation of oxidase enzymes. Hence, this work showed that by controlling the enzymatic activity, the preservation of phenolics with specific bioactivity in herbal tea leaves can be achieved. PRACTICAL APPLICATIONS: Thunbergia laurifolia leaves have been frequently consumed in the form of a tea or pill due to its medicinal properties. Processing of fresh herbal plant leaves by drying is required to preserve antioxidant phenolic compounds and quality of the plant leaves. Although the drying effects on the antioxidant properties have been studied, the factors that cause the change in properties have not been investigated in-depth. Controlling the factors that affect the phenolic content can help to preserve the beneficial antioxidants when processing the leaves by drying. The result of this study will be of relevance and beneficial to the herbal tea industry.