METHODS AND RESULTS: One-hundred and thirteen microfungi isolates were obtained from fruit rot infected banana in Peninsular Malaysia. However, this study was focused on the dominant number of the discovered microfungi that belongs to the genus Fusarium; 48 isolates of the microfungi have been identified belonging to 11 species of Fusarium, namely Fusarium incarnatum, Fusarium equiseti, Fusarium camptoceras, Fusarium solani, Fusarium concolor, Fusarium oxysporum, Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari, Fusarium concentricum and Fusarium fujikuroi. All Fusarium isolates were grouped into their respective clades indicating their similarities and differences in genetic diversity among isolates. Out of 48 Fusarium isolates tested, 42 isolates caused the fruit rot symptom at different levels of severity based on Disease Severity Index (DSI). The most virulent isolate was F. proliferatum B2433B with DSI of 100%.
CONCLUSIONS: All the isolated Fusarium species were successfully identified and some of them were confirmed as the causal agents of pre- and postharvest fruit rot in banana across Peninsular Malaysia.
SIGNIFICANCE AND IMPACT OF THE STUDY: Our results will provide additional information regarding new report of Fusarium species in causing banana fruit rot and in the search of potential biocontrol agent of the disease.
METHODS: From June 2013 through May 2014, diarrheal stool samples were collected at one national referral hospital in Thimphu, two regional referral hospitals in the eastern and central regions, and one general hospital in the western region of Bhutan. NoV was detected by reverse transcription-polymerase chain reaction (RT-PCR), by amplifying the capsid gene. The RT-PCR results were confirmed by nucleotide sequencing of the amplicons.
RESULTS: The proportion of NoV-positive stool samples was 23.6% (147/623), of which 76.9% were NoV GII and the remainders were NoV GI. The median age of infected children was 15.5 months, with a fairly balanced female: male ratio. NoV GII was most prevalent in the colder months (late November-mid April) and NoV GI had the highest prevalence in the summer (mid April-late September). Nucleotide sequencing was successful in 99 samples of GII strains. The most common genotypes were GII.3 (42.6%), GII.4 Sydney 2012 (15.8%), and GII.4 unassigned (11.9%). No GII.21 was found in any child in the present study. Phylogenetic analysis showed that GII.3 strains in the present study belonged to an independent cluster in lineage B. These strains shared an ancestor with those from different countries and Bhutanese strains circulating during 2010.
CONCLUSION: NoV remains an important cause of diarrhea among Bhutanese children. Genotype GII.3 from a single ancestor strain has spread, replacing the previously circulating GII.21. Current NoV genotypes are similar to the strains circulating worldwide but are primarily related to those in neighboring countries. NoV GII is prevalent during the cold season, while GI is prevalent during the summer. To develop a NoV infection control policy, further studies are needed.
METHODS: The study included 143 new cases of HIV-1 infection. Viral RNA was extracted from stocked plasma samples and sequenced for the pol and the env regions using the Sanger method. Near-full length sequencing using MiSeq was performed in 3 patients who were suspected to be infected with recombinant HIV-1. Phylogenetic analysis was performed using the neighbor-joining method and Bayesian Markov chain Monte Carlo method.
RESULTS: MSM was the main transmission route in the previous and current studies. However, heterosexual route showed a significant increase in recent years. Phylogenetic analysis documented three taxa; Mongolian B, Korean B, and CRF51_01B, though the former two were also observed in the previous study. CRF51_01B, which originated from Singapore and Malaysia, was confirmed by near-full length sequencing. Although these strains were mainly detected in MSM, they were also found in increasing numbers of heterosexual males and females. Bayesian phylogenetic analysis estimated transmission of CRF51_01B into Mongolia around early 2000s. An extended Bayesian skyline plot showed a rapid increase in the effective population size of Mongolian B cluster around 2004 and that of CRF51_01B cluster around 2011.
CONCLUSIONS: HIV-1 infection might expand to the general population in Mongolia. Our study documented a new cluster of HIV-1 transmission, enhancing our understanding of the epidemiological status of HIV-1 in Mongolia.