Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners.
A new indole alkaloid, naucline (1) together with four known alkaloids, angustine (2), angustidine (3), nauclefine (4) and naucletine (5), were isolated from the bark of Nauclea officinalis. The structures of all isolated compounds were elucidated with various spectroscopic methods such as 1D- and 2D- NMR, IR, UV and LCMS-IT-TOF. In addition to that of alkaloid 1, the complete 13C-NMR data of naucletine (5) were also reported. Naucline (1) showed a moderate vasorelaxant activity (90% relaxation at 1 × 10(-5) M) whereas, angustine (2), nauclefine (4), and naucletine (5) showed potent vasorelaxant activity (more than 90% relaxation at 1 × 10(-5) M) on an isolated rat aorta.
The objectives of this study are to compare the performance of newly developed baffled and conventional horizontal subsurface-flow (HSF) constructed wetlands in the removal of nitrogen at the hydraulic retention times (HRT) of 2, 3 and 5 days and to evaluate the potential of rice husk as wetland media for wastewater treatment. The results show that the planted baffled unit achieved 74%, 84% and 99% ammonia nitrogen (NH(4)(+)-N) removal versus 55%, 70% and 96% for the conventional unit at HRT of 2, 3 and 5 days, respectively. The better performance of the baffled unit was explained by the longer pathway due to the up-flow and down-flow conditions sequentially thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones. Near complete total oxidized nitrogen was observed due to the use of rice husk as wetland media which provided the COD as the electron donor in the denitrification process.
Hevea brasiliensis extract could potentially be employed as a relatively low cost resource for various anti-fungal activities due to the simplicity of latex preparation and the abundance of latex that can be obtained in rubber producing regions. The present study was aimed at examining the species specific anti-fungal property of H. brasilensis latex C-serum against Aspergillus niger.
The world's rainforests hold untold potential for drug discovery. Rainforest plants are thought to contain evolved defensive active metabolites of greater diversity compared to plants from temperate regions. In recent years, the interest and overall output from pharmaceutical companies on novel antibacterial agents has diminished at a time when there is a critical need for them to fight the threat of resistance. In this study, we have investigated the antimicrobial properties of 21 flowering plants from 16 different families against six bacterial strains consisting of two Gram negative and four Gram positive. Using the pour plate disc diffusion technique, almost all extracts from these plants were found to be active against some of the bacterial strains tested. The most interesting and active plants with broad spectrum activities include Duabanga grandiflora, Acalypha wilkesiana and Pseuduvaria macrophylla where the minimum inhibitory concentration, minimum bactericidal concentration and phytochemical analysis were carried out. This is the first report describing the antimicrobial and phytochemical properties of D. grandiflora and P. macrophylla. Our findings support the utilisation of higher plant species in the search for new antimicrobial molecules to combat new emerging infective diseases and the problem of drug resistant pathogens.
Cholera is a communicable disease caused by consumption of contaminated food and water. This potentially fatal intestinal infection is characterised by profuse secretion of rice watery stool that can rapidly lead to severe dehydration and shock, thus requiring treatment to be given immediately. Epidemic and pandemic cholera are exclusively associated with Vibrio cholerae serogroups O1 and O139. In light of the need for rapid diagnosis of cholera and to prevent spread of outbreaks, we have developed and evaluated a direct one-step lateral flow biosensor for the simultaneous detection of both V. cholerae O1 and O139 serogroups using alkaline peptone water culture. Serogroup specific monoclonal antibodies raised against lipopolysaccharides (LPS) were used to functionalize the colloidal gold nanoparticles for dual detection in the biosensor. The assay is based on immunochromatographic principle where antigen-antibody reaction would result in the accumulation of gold nanoparticles and thus, the appearance of a red line on the strip. The dry-reagent dipstick format of the biosensor ensure user-friendly application, rapid result that can be read with the naked eyes and cold-chain free storage that is well-suited to be performed at resource-limited settings.
The pathogenesis of Blastocystis hominis in human hosts has always been a matter of debate as it is present in both symptomatic and asymptomatic individuals. A recent report showed that B. hominis isolated from an asymptomatic individual could facilitate the proliferation and growth of existing cancer cells while having the potential to downregulate the host immune response. The present study investigated the differences between the effects of symptomatic and asymptomatic derived solubilized antigen of B. hominis (Blasto-Ag) on the cell viability and proliferation of colorectal cancer cells. Besides that, the gene expression of cytokine and nuclear transcriptional factors in response to the symptomatic and asymptomatic B. hominis antigen in HCT116 was also compared. In the current study, an increase in cell proliferation was observed in HCT116 cells which led to the speculation that B. hominis infection could facilitate the growth of colorectal cancer cells. In addition, a more significant upregulation of Th2 cytokines observed in HCT116 may lead to the postulation that symptomatic Blasto-Ag may have the potential in weakening the cellular immune response, allowing the progression of existing tumor cells. The upregulation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) was observed in HCT116 exposed to symptomatic Blasto-Ag, while asymptomatic Blasto-Ag exhibited an insignificant effect on NF-κB gene expression in HCT116. HCT116 cells exposed to symptomatic and asymptomatic Blasto-Ag caused a significant upregulation of CTSB which lead to the postulation that the Blasto-Ag may enhance the invasive and metastasis properties of colorectal cancer. In conclusion, antigen isolated from a symptomatic individual is more pathogenic as compared to asymptomatic isolates as it caused a more extensive inflammatory reaction as well as more enhanced proliferation of cancer cells.
In the present study, a novel oleaginous Thraustochytrid containing a high content of docosahexaenoic acid (DHA) was isolated from a mangrove ecosystem in Malaysia. The strain identified as an Aurantiochytrium sp. by 18S rRNA sequencing and named KRS101 used various carbon and nitrogen sources, indicating metabolic versatility. Optimal culture conditions, thus maximizing cell growth, and high levels of lipid and DHA production, were attained using glucose (60 g l⁻¹) as carbon source, corn steep solid (10 g l⁻¹) as nitrogen source, and sea salt (15 g l⁻¹). The highest biomass, lipid, and DHA production of KRS101 upon fed-batch fermentation were 50.2 g l⁻¹ (16.7 g l⁻¹ day⁻¹), 21.8 g l⁻¹ (44% DCW), and 8.8 g l⁻¹ (40% TFA), respectively. Similar values were obtained when a cheap substrate like molasses, rather than glucose, was used as the carbon source (DCW of 52.44 g l⁻¹, lipid and DHA levels of 20.2 and 8.83 g l⁻¹, respectively), indicating that production of microbial oils containing high levels of DHA can be produced economically when the novel strain is used.
Three new indole alkaloids (1-3), named grandilodines A-C, and five known ones were obtained from the Malayan Kopsia grandifolia. The structures were established using NMR and MS analyses and, in the case of 1 and 2, were confirmed by X-ray diffraction analyses. Alkaloids 1, 3, and lapidilectine B (8) were found to reverse multidrug resistance in vincristine-resistant KB cells.
The presence of heavy metals in the environment results in a number of environmental problems. In this study, the potential of Rambai stem (Baccaurea motleyana) of Malaysia in removing nickel ion from aqueous solution has been evaluated. The raw material used in this study was obtained from local orchard. The collected material passed through physical preparation and treatment process. The adsorbent was thoroughly characterized by SEM, EDX and FTIR studies. The effect of initial nickel concentration, dosage of adsorbent and pH on the adsorption process were investigated. The highest adsorption capacity obtained at weak acidic conditions (pH 4-5) when dosage and initial concentrations are 0.1 and 30 ppm respectively. The percentage of removal of nickel from the solution was found to be 51%. The experimental data fitted well in Freundlich isotherms indicating the adsorption of nickel on Rambai stem (Baccaurea motleyana) followed heterogenous surface phenomena.
Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga.
Mitragyna speciosa, a tropical plant indigenous to Southeast Asia, is well known for its psychoactive properties. Its leaves are traditionally chewed by Thai and Malaysian farmers and manual labourers as it causes a numbing, stimulating effect. The present study aims to evaluate alkaloid yield and composition in the leaf extracts. For this purpose we have compared several non-conventional extraction techniques with classic procedures (room temperature or under heating). Dried M. speciosa leaves belonging to three batches of different origin (from Thailand, Malaysia and Indonesia) were extracted using ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical carbon dioxide extraction SFE-CO(2), using methanol, ethanol, water and binary mixtures. The extracts were compared using an HPLC/ESI-MS analysis of mitragynine and four other related alkaloids which were present in the alkaloid fraction. The extraction technique influences both the raw product yield and the relative alkaloid content of M. speciosa leaves. Of the several methods tested, MAE in a closed vessel at 110 °C (60 W, methanol/water 1:1) gave the highest alkaloid fraction amount, while UAE with an immersion horn at 25 °C (21.4 kHz, 50 W, methanol) showed the best yield for mitragynine. This work may prove to be a useful contribution to forensic, toxicological and pharmacognosy studies. Although the potential applications of M. speciosa alkaloids clearly need further investigation, these results may facilitate the scaling-up of their extraction.
The present study was aimed to investigate the anti-diabetic potential of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in vivo with regard to prove its efficacy by local herbalists in the treatment of diabetes frailties.
Leucofoline and leuconoline, representing the first members of the aspidospermatan-aspidospermatan and eburnane-sarpagine subclasses of the bisindole alkaloids, respectively, were isolated from the Malayan Leuconotis griffithii. The structures of these bisindole alkaloids were established using NMR and MS analysis, and in the case of leuconoline, confirmed by X-ray diffraction analysis. Both alkaloids showed weak cytotoxicity towards human KB cells.
Central composite design (CCD) and response surface methodology (RSM) were employed to optimize four important variables, i.e. amounts of oil, bacterial inoculum, nitrogen and phosphorus, for the removal of selected n-alkanes during bioremediation of weathered crude oil in coastal sediments using laboratory bioreactors over a 60 day experimentation period. The reactors contained 1 kg soil with different oil, microorganisms and nutrients concentrations. The F Value of 26.89 and the probability value (P < 0.0001) demonstrated significance of the regression model. For crude oil concentration of 2, 16 and 30 g per kg sediments and under optimized conditions, n-alkanes removal was 97.38, 93.14 and 90.21% respectively. Natural attenuation removed 30.07, 25.92 and 23.09% n-alkanes from 2, 16 and 30 g oil/kg sediments respectively. Excessive nutrients addition was found to inhibit bioremediation.
The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μ(max), K(s) and K(i) were determined to be 0.13 h⁻¹, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.
In the past decade, enterovirus 71 (EV71) and chikungunya (CHIK) virus have re-emerged periodically causing serious public health problems in Malaysia, since their first emergence in 1997 and 1998 respectively. This study demonstrates that CHIK virus causes similar patterns of cytopathic effect in cultured Vero cells as some enteroviruses. They also show positive cross-reaction on direct immunofluorescence staining using monoclonal antibodies meant for typing enteroviruses. Without adequate clinical and epidemiological information for correlation, CHIK virus isolated from patients with acute febrile rash can be wrongly reported as untypeable enterovirus due to its cross-reactivity with commercial pan-enterovirus monoclonal antibodies. This is due to the diagnostic laboratory being unaware of such cross-reactions as it has not been reported previously. Final identification of the virus could be determined with specific antibodies or molecular typing using specific oligonucleotide primers for the CHIK virus.
Four new bisindole alkaloids of the Strychnos-Strychnos type, leucoridines A-D (1-4), were isolated from the stem-bark extract of Leuconotis griffithii. Alkaloids 1-4 showed moderate cytotoxicity against drug-sensitive and vincristine-resistant human KB cells.