Displaying publications 121 - 140 of 203 in total

Abstract:
Sort:
  1. Ibrahim MH, Chee Kong Y, Mohd Zain NA
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023367 DOI: 10.3390/molecules22101623
    A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.
    Matched MeSH terms: Cadmium/pharmacology*; Cadmium/toxicity
  2. Abduljaleel SA, Shuhaimi-Othman M
    Pak J Biol Sci, 2013 Nov 15;16(22):1551-6.
    PMID: 24511699
    The influence of dietary cadmium on the accumulation and effects of dietary lead, examined in chicken. This experiment was conducted to investigate the toxic effects of dietary Cd and Pb on chick's body weight and organ, content of the tissues of these two metals was also detected. One day age chicks of Gallus gallus domesticus fed diet supplemented with 25, 50, 100 ppm of Cd, second group exposure to 300, 500, 1000 ppm of Pb in feed daily during 4 weeks. The control groups were fed without supplementation of metals. The concentrations of Cd and Pb resulted in increased of Cd and Pb content in liver, gizzard and muscle. While Cd 100 ppm and Pb 1000 ppm were increased metals content in feather. Body weight of chicks was not influenced by Cd treatment. In contrary Pb treatment was significantly (p < 0.05) decreased body weight of chicks after dietary treatment. On the other hand, Liver weigh in chicks was significantly (p < 0.05) decreased after Cd and Pb treatments.
    Matched MeSH terms: Cadmium Chloride/adverse effects*; Cadmium Chloride/metabolism
  3. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al.
    Int J Nanomedicine, 2017;12:8309-8323.
    PMID: 29200844 DOI: 10.2147/IJN.S150405
    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: Cadmium Compounds/pharmacology; Cadmium Compounds/chemistry*
  4. Foo CY, Lim HN, Pandikumar A, Huang NM, Ng YH
    J Hazard Mater, 2016 Mar 5;304:400-8.
    PMID: 26595899 DOI: 10.1016/j.jhazmat.2015.11.004
    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+).
    Matched MeSH terms: Cadmium Compounds
  5. Bin Abas MR, Takruni IA, Abdullah Z, Tahir NM
    Talanta, 2002 Nov 12;58(5):883-90.
    PMID: 18968820
    A flow injection (FI) method with on-line preconcentration using a mini-column loaded with 8-hydroxyquinoline immobilized on controlled pore glass (CPG-8HQ) is described for the determination of trace metals by ion chromatography (IC) with pyridine-2-6-dicarboxylic acid (PDCA) as the eluent. Copper, cadmium, lead, zinc, nickel and iron were determined at ppb level after post-column derivatization with 4-(2-pyridylazo)-resorcinol (PAR). The detection limits (3sigma) for the FI/IC system were 8.27, 0.89, 0.09, 0.06, 0.09 and 0.07 g l(-1) for Pb(2+), Cd(2+), Cu(2+) Ni(2+), Zn(2+) and Fe(3+), respectively, using 5 ml sample volume. The method was applied to the analysis of Malaysian natural waters.
    Matched MeSH terms: Cadmium
  6. Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N
    J Environ Manage, 2016 Jan 15;166:124-30.
    PMID: 26496842 DOI: 10.1016/j.jenvman.2015.10.020
    Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant.
    Matched MeSH terms: Cadmium
  7. Balkhair KS, Ashraf MA
    Saudi J Biol Sci, 2016 Jan;23(1):S32-44.
    PMID: 26858563 DOI: 10.1016/j.sjbs.2015.09.023
    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study.
    Matched MeSH terms: Cadmium
  8. Chong C
    Talanta, 1986 Jan;33(1):91-4.
    PMID: 18964038
    A simple atomic-absorption spectrophotometry method is described for the determination of silver, bismuth, cadmium, copper, iron, nickel and zinc in lead- and tin-base solders and white-metal bearing alloys, with use of a single sample solution. The sample is dissolved in a mixture of hydrobromic acid and bromine, then fumed with sulphuric acid. The lead sulphate is dissolved in concentrated hydrochloric acid. The method is particularly suitable for the determination of silver and bismuth, which are co-precipitated with lead sulphate. The other elements can also be determined after removal of the lead sulphate by filtration.
    Matched MeSH terms: Cadmium
  9. Hajeb P, Sloth JJ, Shakibazadeh S, Mahyudin NA, Afsah-Hejri L
    Compr Rev Food Sci Food Saf, 2014 Jul;13(4):457-472.
    PMID: 33412705 DOI: 10.1111/1541-4337.12068
    Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular emphasis on the chemical binding of both the organic and inorganic forms of each element in various foods. The molecular groups and the ligands by which the food products bind with the metals and the types of these reactions are also presented.
    Matched MeSH terms: Cadmium
  10. Mohd Noor Keeflee SNK, Wan Mohd Zain WNA, Mohd Nor MN, Jamion NA, Yong SK
    Heliyon, 2020 Sep;6(9):e05086.
    PMID: 33015401 DOI: 10.1016/j.heliyon.2020.e05086
    Cat manure (CM) possesses high level of nutrients for growing food crop. However, animal manure may contain toxic elements that may contaminate food crop. Spent coffee ground (SCG) may be used to reduce mobility of heavy metals and reduce crop uptake. In this study, SCG was composted with CM for 31 days to produce a co-compost (SCG-CM) for growing spinach (Spinacia oleracea). The growth rate of spinach was assessed until its maturity, and the metal uptake of spinach shoot was determined thereafter using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The effect of soil treatment with SCG-CM on the height and elemental composition of spinach were compared with that of chicken manure compost (CMC). The prepared composts were primarily organic matter (72.9-81.4 % w/w) with the rest are ash (13.3-23.4 % w/w) and moisture (1.2-2.6 % w/w). Zinc content in SCG-CM (1261 ± 0.1 mg/kg) is significantly higher than that of soil and CMC (p < 0.05) and has exceeded the maximum permissible limit set by European Union Standard (2002) and the Malaysian Compost Quality Standard and Guidelines (2000). Matured spinach reached maximum plant height after 33 days. The amendment of SCG-CM significantly increased the height of spinach (32 ± 6 cm) compared to that of CMC (13 ± 1 cm) (p < 0.05). However, contents of Zn, Cu, Pb and Cd were not increased for spinach grown in the SCG-CM-amended soil, and the level of those elements are below permissible limit set by the Malaysian Food Act 1983 and Food Regulations 1985. This study shows that SCG-CM is effective in improving yield without causing accumulation of toxic trace elements in spinach.
    Matched MeSH terms: Cadmium
  11. Garba J, Samsuri WA, Othman R, Hamdani MSA
    Sci Rep, 2019 11 27;9(1):17689.
    PMID: 31776374 DOI: 10.1038/s41598-019-54079-0
    Glyphosate (GLY) is a major herbicide used throughout the world, and its continuous application has become an environmental issue. Adsorption is an important mechanism for removing organic contaminant in water. The present study characterized cow dung (CD) and rice husk ash (RHA), and determined the adsorption-desorption of GLY and its metabolite, aminomethylphoshonic acid (AMPA), on to them. The results revealed that both CD and RHA were alkaline and had no or low content of arsenic, cadmium, chromium and lead. The CD had lower surface area (13.104 mg2g-1) than RHA (21.500 m2g-1). The CD contained amines, phenol, ethers and carboxylic functional groups, while in addition to carboxylic and ether, RHA contains siloxane. Both CD and RHA had high affinities for GLY and AMPA. The Freundlich sorption coefficient (Kf) on AMPA were 2.915 and 2.660 for CD and RHA, respectively, while the values on GLY were 1.168 and 1.166 (mg g-1) for CD and RHA, respectively. Desorption of GLY only occurred at lower concentrations, while no desorption of AMPA was recorded, indicating their strong adsorption on CD and RHA. Considering their availabilities and affordable prices, both CD and RHA can be recommended as economical adsorbent for the removal of GLY and AMPA.
    Matched MeSH terms: Cadmium
  12. Praveena SM
    Arch Environ Contam Toxicol, 2018 Oct;75(3):415-423.
    PMID: 29802419 DOI: 10.1007/s00244-018-0537-7
    This study was designed to determine the particle size distribution and develop road dust index combining source and transport factors involving road dust for dust pollution quantification in Rawang. Principal component analysis (PCA) was applied to identify possible sources of potentially toxic elements and spot major pollution areas in Rawang. The health risks (carcinogenic and noncarcinogenic) to adults and children were assessed using the hazard index and total lifetime cancer Risk, respectively. A total of 75 road dust samples were collected and particle sizes (1000, 500, 250, 160, 125 and 63 µm) were determined. Concentrations of potentially toxic elements (Cu, Cd, Co, Cr, Pb, Ni, Zn and As) in particle size of 63 µm were analyzed. The results demonstrated that the highest grain size of 250 µm has contributed almost more than 25% of atmospheric particulate pollution. The highest potentially toxic element concentration was Pb (593.3 mg/kg), whereas the lowest was Co (5.6 mg/kg). Road dust index output indicated that pollution risk fell into moderate levels in eastern and northern areas of Rawang. Similarly, PCA results revealed that potentially toxic elements (Cu, Cd, Pb, Zn, Ni and Cr) were linked with anthropogenic sources (urbanization process, industrial and commercial growth, urban traffic congestion) in northern and southern parts of Rawang. Cobalt and As concentrations were explained mainly from natural sources. Noncarcinogenic risk by hazard index value more than 1.0 was indicated for adults and children. Similarly, carcinogenic risk by total lifetime cancer risk value also showed carcinogenic risks among adults and children.
    Matched MeSH terms: Cadmium
  13. Yusuf I, Ahmad SA, Phang LY, Yasid NA, Shukor MY
    3 Biotech, 2019 Jan;9(1):32.
    PMID: 30622870 DOI: 10.1007/s13205-018-1555-x
    The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.
    Matched MeSH terms: Cadmium
  14. Banch TJH, Hanafiah MM, Alkarkhi AFM, Abu Amr SS
    Polymers (Basel), 2019 Aug 14;11(8).
    PMID: 31416151 DOI: 10.3390/polym11081349
    In this study, tannin-based natural coagulant was used to treat stabilized landfill leachate. Tannin modified with amino group was utilized for the treatment process. Central composite design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four responses. The treatment efficiency was evaluated based on the removal of four selected (responses) parameters; namely, chemical oxygen demand (COD), color, NH3-N and total suspended solids (TSS). The optimum removal efficiency for COD, TSS, NH3-N and color was obtained using a tannin dosage of 0.73 g at a pH of 6. Moreover, the removal efficiency for selected heavy metals from leachate; namely, iron (Fe2+), zinc (Zn2+), copper (Cu2+), chromium (Cr2+), cadmium (Cd2+), lead (Pb2+), arsenic (As3+), and cobalt (Co2+) was also investigated. The results for removal efficiency for COD, TSS, NH3-N, and color were 53.50%, 60.26%, and 91.39%, respectively. The removal of selected heavy metals from leachate for Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb2+, As3+ and cobalt Co2+ were 89.76%, 94.61%, 94.15%, 89.94%, 17.26%, 93.78%, 86.43% and 84.19%, respectively. The results demonstrate that tannin-based natural coagulant could effectively remove organic compounds and heavy metals from stabilized landfill leachate.
    Matched MeSH terms: Cadmium
  15. Chong TM, Yin WF, Chen JW, Mondy S, Grandclément C, Faure D, et al.
    AMB Express, 2016 Dec;6(1):95.
    PMID: 27730570
    Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.
    Matched MeSH terms: Cadmium
  16. Iqbal F, Ayub Q, Wilson R, Song BK, Talei A, Yeong KY, et al.
    Environ Monit Assess, 2021 Mar 30;193(4):237.
    PMID: 33783594 DOI: 10.1007/s10661-021-08966-7
    A widely distributed urban bird, the house crow (Corvus splendens), was used to assess bioavailable heavy metals in urban and rural environments across Pakistan. Bioaccumulation of arsenic (As), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and copper (Cu) was investigated in wing feathers of 96 crows collected from eight locations and categorized into four groups pertaining to their geographical and environmental similarities. Results revealed that the concentrations of Pb, Ni, Mn, Cu, and Cr were positively correlated and varied significantly among the four groups. Zn, Fe, Cr, and Cu regarded as industrial outputs, were observed in birds both in industrialized cities and in adjoining rural agricultural areas irrigated through the Indus Basin Irrigation System. Birds in both urban regions accrued Pb more than the metal toxicity thresholds for birds. The house crow was ranked in the middle on the metal accumulation levels in feathers between highly accumulating raptor and piscivore and less contaminated insectivore and granivore species in the studied areas,. This study suggests that the house crow is an efficient bioindicator and supports the feasibility of using feathers to discriminate the local pollution differences among terrestrial environments having different levels and kinds of anthropogenic activities.
    Matched MeSH terms: Cadmium
  17. Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, et al.
    Compr Rev Food Sci Food Saf, 2016 Jan;15(1):219-233.
    PMID: 33371579 DOI: 10.1111/1541-4337.12182
    Honey is a popular natural food product with a very complex composition mainly consisting of both organic and inorganic constituents. The composition of honey is strongly influenced by both natural and anthropogenic factors, which vary based on its botanical and geographical origins. Although minerals and heavy metals are minor constituents of honey, they play vital role in determining its quality. There are several different analytical methods used to determine the chemical elements in honey. These methods are typically based on spectroscopy or spectrometry techniques (including atomic absorption spectrometry, atomic emission spectrometry, inductively coupled plasma mass spectrometry, and inductively coupled plasma optical emission spectrometry). This review compiles available scientific information on minerals and heavy metals in honey reported from all over the world. To date, 54 chemical elements in various types of honey have been identified and can be divided into 3 groups: major or macroelements (Na, K, Ca, Mg, P, S, Cl), minor or trace elements (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, La, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr, As, B, Br, Cd, Hg, Se, Sr), and heavy metals (trace elements that have a specific gravity at least 5 times higher than that of water and inorganic sources). Chemical elements in honey samples throughout the world vary in terms of concentrations and are also influenced by environmental pollution.
    Matched MeSH terms: Cadmium
  18. Wang J, Yi X, Cui J, Chang Y, Yao D, Zhou D, et al.
    Sci Total Environ, 2019 Jun 20;670:1060-1067.
    PMID: 31018421 DOI: 10.1016/j.scitotenv.2019.03.245
    With the population growth, urbanization and industrialization, China has become a hotspot of atmospheric deposition nitrogen (ADN), which is a threat to ecosystem and food safety. However, the impacts of increased ADN on rice growth and grain metal content are little studied. Based on previous long-term ADN studies, greenhouse experiment was conducted with four simulated ADN rates of 0, 30, 60 and 90 kg N ha-1 yr-1 (CK, N1, N2 and N3 as δ15N, respectively) to assess rice growth and metal uptake in a red soil ecosystem of southeast China during 2016-2017. Results showed that simulated ADN could promote rice growth and increase yields by 15.68-24.41% (except N2) and accumulations of cadmium (Cd) or copper (Cu) in organs. However, there was no linear relationship between ADN rate and rice growth or Cd or Cu uptake. The 15N-ADN was mainly accumulated in roots (21.31-67.86%) and grains (25.26-49.35%), while Cd and Cu were primarily accumulated in roots (78.86-93.44% and 90.00-96.24%, respectively). 15N-ADN and Cd accumulations in roots were significantly different between the two growing seasons (p 
    Matched MeSH terms: Cadmium
  19. Al-Hada NM, Saion E, Talib ZA, Shaari AH
    Polymers (Basel), 2016 Apr 08;8(4).
    PMID: 30979222 DOI: 10.3390/polym8040113
    Cadmium oxide semiconductor nanoparticles were produced using a water based mixture, incorporating cadmium nitrates, polyvinyl pyrrolidone (PVP), and calcination temperature. An X-ray diffraction (XRD) evaluation was conducted to determine the degree of crystallization of the semiconductor nanoparticles. In addition, scanning electron microscopy (SEM) was conducted to identify the morphological features of the nanoparticles. The typical particle sizes and particle dispersal were analyzed via the use of transmission electron microscopy (TEM). The findings provided further support for the XRD outcomes. To determine the composition phase, Fourier transform infrared spectroscopy (FT-IR) was conducted, as it indicated the existence of not only metal oxide ionic band in the selection of samples, but also the efficient removal of organic compounds following calcinations. The optical characteristics were demonstrated, so as to analyze the energy band gap via the use of a UV⁻Vis spectrophotometer. A reduced particle size resulted in diminution of the intensity of photoluminescence, was demonstrated by PL spectra. Plus, the magnetic characteristics were examined using an electron spin resonance (ESR) spectroscopy, which affirmed the existence of unpaired electrons.
    Matched MeSH terms: Cadmium
  20. Brza MA, B Aziz S, Anuar H, Dannoun EMA, Ali F, Abdulwahid RT, et al.
    Polymers (Basel), 2020 Aug 23;12(9).
    PMID: 32842522 DOI: 10.3390/polym12091896
    In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10-3 S cm-1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.
    Matched MeSH terms: Cadmium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links