METHODS: Diabetes data were derived from the Malaysian National Health and Morbidity Surveys conducted in 2006, 2011 and 2015. The air pollution data (NOx, NO2, SO2, O3 and PM10) were obtained from the Department of Environment Malaysia. Using multiple logistic and linear regression models, the association between long-term exposure to these pollutants and prevalence of diabetes among Malaysian adults was evaluated.
RESULTS: The PM10 concentration decreased from 2006 to 2014, followed by an increase in 2015. Levels of NOx decreased while O3 increased annually. The air pollutant levels based on individual modelled air pollution exposure as measured by the nearest monitoring station were higher than the annual averages of the five pollutants present in the ambient air. The prevalence of overall diabetes increased from 11.4% in 2006 to 21.2% in 2015. The prevalence of known diabetes, underdiagnosed diabetes, overweight and obesity also increased over these years. There were significant positive effect estimates of known diabetes at 1.125 (95% CI, 1.042, 1.213) for PM10, 1.553 (95% CI, 1.328, 1.816) for O3, 1.271 (95% CI, 1.088, 1.486) for SO2, 1.124 (95% CI, 1.048, 1.207) for NO2, and 1.087 (95% CI, 1.024, 1.153) for NOx for NHMS 2006. The adjusted annual average levels of PM10 [1.187 (95% CI, 1.088, 1.294)], O3 [1.701 (95% CI, 1.387, 2.086)], NO2 [1.120 (95% CI, 1.026, 1.222)] and NOx [1.110 (95% CI, 1.028, 1.199)] increased significantly from NHMS 2006 to NHMS 2011 for overall diabetes. This was followed by a significant decreasing trend from NHMS 2011 to 2015 [0.911 for NO2, and 0.910 for NOx].
CONCLUSION: The findings of this study suggest that long-term exposure to O3 is an important associated factor of underdiagnosed DM risk in Malaysia. PM10, NO2 and NOx may have mixed effect estimates towards the risk of DM, and their roles should be further investigated with other interaction models. Policy and intervention measures should be taken to reduce air pollution in Malaysia.
OBJECTIVE: This study was carried out to determine the comparison between carapace width and growth band count of S. olivacea in Malaysia.
MATERIALS AND METHODS: Samples were collected from Setiu Wetlands, Terengganu, Malaysia from February until August, 2016. Samples were categorized based on their morphological measurements. The mesocardiac and zygocardiac ossicles in the gastric mill of S. olivacea was dissected out and preserved in solutions and underwent a cross sectioning process. A total of 76 of wild S. olivacea ranging from 6.56 to 12.84 cm in carapace width were analysed. The growth band counts were examined for each individual and ranging from 1 to 3 band counts.
RESULTS: A positive linear relation was observed between CW and GBC with r2 = 0.5178, p<0.01. Overall, there was a strong, positive correlation between CW and GBC. Increase in CW were correlated with increases in GBC respectively for this species.
CONCLUSION: Therefore, the carapace width, growth band counts and body weight can be used to improve data on growth, recruitment, maturation and mortality. Thus, this study would able to improve new ageing technique and contribute greatly to improve the conservation and management of S. olivacea in Setiu Wetlands, Terengganu, Malaysia.
OBJECTIVE: The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations.
METHODS: Twenty-one right hand dominant male subjects (age 25.3±1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation.
RESULTS: The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r2=0.62, P<0.05) than when placed on the lower part (r2=0.31, P>0.05) and upper part of the muscle belly (r2=0.29, P<0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively).
CONCLUSION: These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.