Displaying publications 121 - 140 of 420 in total

Abstract:
Sort:
  1. Yogarathinam LT, Velswamy K, Gangasalam A, Ismail AF, Goh PS, Narayanan A, et al.
    J Environ Manage, 2022 Jan 01;301:113872.
    PMID: 34607142 DOI: 10.1016/j.jenvman.2021.113872
    Effluent originating from cheese production puts pressure onto environment due to its high organic load. Therefore, the main objective of this work was to compare the influence of different process variables (transmembrane pressure (TMP), Reynolds number and feed pH) on whey protein recovery from synthetic and industrial cheese whey using polyethersulfone (PES 30 kDa) membrane in dead-end and cross-flow modes. Analysis on the fouling mechanistic model indicates that cake layer formation is dominant as compared to other pore blocking phenomena evaluated. Among the input variables, pH of whey protein solution has the biggest influence towards membrane flux and protein rejection performances. At pH 4, electrostatic attraction experienced by whey protein molecules prompted a decline in flux. Cross-flow filtration system exhibited a whey rejection value of 0.97 with an average flux of 69.40 L/m2h and at an experimental condition of 250 kPa and 8 for TMP and pH, respectively. The dynamic behavior of whey effluent flux was modeled using machine learning (ML) tool convolutional neural networks (CNN) and recursive one-step prediction scheme was utilized. Linear and non-linear correlation indicated that CNN model (R2 - 0.99) correlated well with the dynamic flux experimental data. PES 30 kDa membrane displayed a total protein rejection coefficient of 0.96 with 55% of water recovery for the industrial cheese whey effluent. Overall, these filtration studies revealed that this dynamic whey flux data studies using the CNN modeling also has a wider scope as it can be applied in sensor tuning to monitor flux online by means of enhancing whey recovery efficiency.
  2. Haque R, Ho SB, Chai I, Abdullah A
    F1000Res, 2021;10:911.
    PMID: 34745565 DOI: 10.12688/f1000research.73026.1
    Background - Recently, there have been attempts to develop mHealth applications for asthma self-management. However, there is a lack of applications that can offer accurate predictions of asthma exacerbation using the weather triggers and demographic characteristics to give tailored response to users. This paper proposes an optimised Deep Neural Network Regression (DNNR) model to predict asthma exacerbation based on personalised weather triggers. Methods - With the aim of integrating weather, demography, and asthma tracking, an mHealth application was developed where users conduct the Asthma Control Test (ACT) to identify the chances of their asthma exacerbation. The asthma dataset consists of panel data from 10 users that includes 1010 ACT scores as the target output. Moreover, the dataset contains 10 input features which include five weather features (temperature, humidity, air-pressure, UV-index, wind-speed) and five demography features (age, gender, outdoor-job, outdoor-activities, location). Results - Using the DNNR model on the asthma dataset, a score of 0.83 was achieved with Mean Absolute Error (MAE)=1.44 and Mean Squared Error (MSE)=3.62. It was recognised that, for effective asthma self-management, the prediction errors must be in the acceptable loss range (error<0.5). Therefore, an optimisation process was proposed to reduce the error rates and increase the accuracy by applying standardisation and fragmented-grid-search. Consequently, the optimised-DNNR model (with 2 hidden-layers and 50 hidden-nodes) using the Adam optimiser achieved a 94% accuracy with MAE=0.20 and MSE=0.09. Conclusions - This study is the first of its kind that recognises the potentials of DNNR to identify the correlation patterns among asthma, weather, and demographic variables. The optimised-DNNR model provides predictions with a significantly higher accuracy rate than the existing predictive models and using less computing time. Thus, the optimisation process is useful to build an enhanced model that can be integrated into the asthma self-management for mHealth application.
  3. Aznan A, Gonzalez Viejo C, Pang A, Fuentes S
    Sensors (Basel), 2022 Nov 09;22(22).
    PMID: 36433249 DOI: 10.3390/s22228655
    Rice fraud is one of the common threats to the rice industry. Conventional methods to detect rice adulteration are costly, time-consuming, and tedious. This study proposes the quantitative prediction of rice adulteration levels measured through the packaging using a handheld near-infrared (NIR) spectrometer and electronic nose (e-nose) sensors measuring directly on samples and paired with machine learning (ML) algorithms. For these purposes, the samples were prepared by mixing rice at different ratios from 0% to 100% with a 10% increment based on the rice's weight, consisting of (i) rice from different origins, (ii) premium with regular rice, (iii) aromatic with non-aromatic, and (iv) organic with non-organic rice. Multivariate data analysis was used to explore the sample distribution and its relationship with the e-nose sensors for parameter engineering before ML modeling. Artificial neural network (ANN) algorithms were used to predict the adulteration levels of the rice samples using the e-nose sensors and NIR absorbances readings as inputs. Results showed that both sensing devices could detect rice adulteration at different mixing ratios with high correlation coefficients through direct (e-nose; R = 0.94-0.98) and non-invasive measurement through the packaging (NIR; R = 0.95-0.98). The proposed method uses low-cost, rapid, and portable sensing devices coupled with ML that have shown to be reliable and accurate to increase the efficiency of rice fraud detection through the rice production chain.
  4. Arora R, Bansal V, Buckchash H, Kumar R, Sahayasheela VJ, Narayanan N, et al.
    Phys Eng Sci Med, 2021 Dec;44(4):1257-1271.
    PMID: 34609703 DOI: 10.1007/s13246-021-01060-9
    According to the World Health Organization (WHO), novel coronavirus (COVID-19) is an infectious disease and has a significant social and economic impact. The main challenge in fighting against this disease is its scale. Due to the outbreak, medical facilities are under pressure due to case numbers. A quick diagnosis system is required to address these challenges. To this end, a stochastic deep learning model is proposed. The main idea is to constrain the deep-representations over a Gaussian prior to reinforce the discriminability in feature space. The model can work on chest X-ray or CT-scan images. It provides a fast diagnosis of COVID-19 and can scale seamlessly. The work presents a comprehensive evaluation of previously proposed approaches for X-ray based disease diagnosis. The approach works by learning a latent space over X-ray image distribution from the ensemble of state-of-the-art convolutional-nets, and then linearly regressing the predictions from an ensemble of classifiers which take the latent vector as input. We experimented with publicly available datasets having three classes: COVID-19, normal and pneumonia yielding an overall accuracy and AUC of 0.91 and 0.97, respectively. Moreover, for robust evaluation, experiments were performed on a large chest X-ray dataset to classify among Atelectasis, Effusion, Infiltration, Nodule, and Pneumonia classes. The results demonstrate that the proposed model has better understanding of the X-ray images which make the network more generic to be later used with other domains of medical image analysis.
  5. Singhania U, Tripathy B, Hasan MK, Anumbe NC, Alboaneen D, Ahmed FRA, et al.
    Front Public Health, 2021;9:751536.
    PMID: 34708019 DOI: 10.3389/fpubh.2021.751536
    Alzheimer's Disease (AD) is a neurodegenerative irreversible brain disorder that gradually wipes out the memory, thinking skills and eventually the ability to carry out day-to-day tasks. The amount of AD patients is rapidly increasing due to several lifestyle changes that affect biological functions. Detection of AD at its early stages helps in the treatment of patients. In this paper, a predictive and preventive model that uses biomarkers such as the amyloid-beta protein is proposed to detect, predict, and prevent AD onset. A Convolution Neural Network (CNN) based model is developed to predict AD at its early stages. The results obtained proved that the proposed model outperforms the traditional Machine Learning (ML) algorithms such as Logistic Regression, Support Vector Machine, Decision Tree Classifier, and K Nearest Neighbor algorithms.
  6. Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip B, Othman N, Hossain S, et al.
    Environ Res, 2022 03;204(Pt A):111926.
    PMID: 34461120 DOI: 10.1016/j.envres.2021.111926
    The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 μL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 μl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.
  7. Bong HK, Selvarajoo A, Arumugasamy SK
    Environ Monit Assess, 2022 Jan 07;194(2):70.
    PMID: 34994870 DOI: 10.1007/s10661-021-09691-x
    Biochar derived from banana peels can be used as an alternative nutrient in the soil that can promote crop growth while reducing fertiliser usage. Biochar stability has proportional relationship to biochar residence time in the soil and potassium is one of the vital nutrients needed for plant growth. This research aims at providing optimum pyrolysis operating conditions like temperature, residence time, and heating rate using banana peels as feedstock. An electrical tubular furnace was used to conduct the pyrolysis process to convert banana peels into biochar. The elemental compositions of biochar are potassium, oxygen (O), and carbon (C) content. The O:C ratio was used as the biochar stability indicator. Analysis of results showed that operating temperature has the most remarkable effect on biochar yield, biochar stability, and biochar's potassium content. In addition, a multilayer feedforward artificial neural network model was developed for the pyrolysis process. Eleven training algorithms were selected to model the multi-input multi-output neural network (MIMO). The most suitable training algorithm was identified through four performance criterions which are root mean square error (RMSE), mean absolute error (MSE), mean absolute percentage error (MAPE), and regression (R2). The results show that the Levenberg-Marquardt backpropagation training algorithm has the lowest error. From the chosen training algorithm, neural network was trained, and optimum operating parameters for banana peel were predicted at 490 °C, 110 min, and 11 °C/min with a high yield of 47.78%, O/C ratio of 0.2393, and 14.04 wt. % of potassium.
  8. Tahir GA, Loo CK
    Comput Biol Med, 2021 12;139:104972.
    PMID: 34749093 DOI: 10.1016/j.compbiomed.2021.104972
    Food recognition systems recently garnered much research attention in the relevant field due to their ability to obtain objective measurements for dietary intake. This feature contributes to the management of various chronic conditions. Challenges such as inter and intraclass variations alongside the practical applications of smart glasses, wearable cameras, and mobile devices require resource-efficient food recognition models with high classification performance. Furthermore, explainable AI is also crucial in health-related domains as it characterizes model performance, enhancing its transparency and objectivity. Our proposed architecture attempts to address these challenges by drawing on the strengths of the transfer learning technique upon initializing MobiletNetV3 with weights from a pre-trained model of ImageNet. The MobileNetV3 achieves superior performance using the squeeze and excitation strategy, providing unequal weight to different input channels and contrasting equal weights in other variants. Despite being fast and efficient, there is a high possibility for it to be stuck in the local optima like other deep neural networks, reducing the desired classification performance of the model. Thus, we overcome this issue by applying the snapshot ensemble approach as it enables the M model in a single training process without any increase in the required training time. As a result, each snapshot in the ensemble visits different local minima before converging to the final solution which enhances recognition performance. On overcoming the challenge of explainability, we argue that explanations cannot be monolithic, since each stakeholder perceive the results', explanations based on different objectives and aims. Thus, we proposed a user-centered explainable artificial intelligence (AI) framework to increase the trust of the involved parties by inferencing and rationalizing the results according to needs and user profile. Our framework is comprehensive in terms of a dietary assessment app as it detects Food/Non-Food, food categories, and ingredients. Experimental results on the standard food benchmarks and newly contributed Malaysian food dataset for ingredient detection demonstrated superior performance on an integrated set of measures over other methodologies.
  9. Hasan MK, Ghazal TM, Alkhalifah A, Abu Bakar KA, Omidvar A, Nafi NS, et al.
    Front Public Health, 2021;9:737149.
    PMID: 34712639 DOI: 10.3389/fpubh.2021.737149
    The internet of reality or augmented reality has been considered a breakthrough and an outstanding critical mutation with an emphasis on data mining leading to dismantling of some of its assumptions among several of its stakeholders. In this work, we study the pillars of these technologies connected to web usage as the Internet of things (IoT) system's healthcare infrastructure. We used several data mining techniques to evaluate the online advertisement data set, which can be categorized as high dimensional with 1,553 attributes, and the imbalanced data set, which automatically simulates an IoT discrimination problem. The proposed methodology applies Fischer linear discrimination analysis (FLDA) and quadratic discrimination analysis (QDA) within random projection (RP) filters to compare our runtime and accuracy with support vector machine (SVM), K-nearest neighbor (KNN), and Multilayer perceptron (MLP) in IoT-based systems. Finally, the impact on number of projections was practically experimented, and the sensitivity of both FLDA and QDA with regard to precision and runtime was found to be challenging. The modeling results show not only improved accuracy, but also runtime improvements. When compared with SVM, KNN, and MLP in QDA and FLDA, runtime shortens by 20 times in our chosen data set simulated for a healthcare framework. The RP filtering in the preprocessing stage of the attribute selection, fulfilling the model's runtime, is a standpoint in the IoT industry. Index Terms: Data Mining, Random Projection, Fischer Linear Discriminant Analysis, Online Advertisement Dataset, Quadratic Discriminant Analysis, Feature Selection, Internet of Things.
  10. Adnan MSG, Siam ZS, Kabir I, Kabir Z, Ahmed MR, Hassan QK, et al.
    J Environ Manage, 2023 Jan 15;326(Pt B):116813.
    PMID: 36435143 DOI: 10.1016/j.jenvman.2022.116813
    Globally, many studies on machine learning (ML)-based flood susceptibility modeling have been carried out in recent years. While majority of those models produce reasonably accurate flood predictions, the outcomes are subject to uncertainty since flood susceptibility models (FSMs) may produce varying spatial predictions. However, there have not been many attempts to address these uncertainties because identifying spatial agreement in flood projections is a complex process. This study presents a framework for reducing spatial disagreement among four standalone and hybridized ML-based FSMs: random forest (RF), k-nearest neighbor (KNN), multilayer perceptron (MLP), and hybridized genetic algorithm-gaussian radial basis function-support vector regression (GA-RBF-SVR). Besides, an optimized model was developed combining the outcomes of those four models. The southwest coastal region of Bangladesh was selected as the case area. A comparable percentage of flood potential area (approximately 60% of the total land areas) was produced by all ML-based models. Despite achieving high prediction accuracy, spatial discrepancy in the model outcomes was observed, with pixel-wise correlation coefficients across different models ranging from 0.62 to 0.91. The optimized model exhibited high prediction accuracy and improved spatial agreement by reducing the number of classification errors. The framework presented in this study might aid in the formulation of risk-based development plans and enhancement of current early warning systems.
  11. Latif G, Bashar A, Awang Iskandar DNF, Mohammad N, Brahim GB, Alghazo JM
    Med Biol Eng Comput, 2023 Jan;61(1):45-59.
    PMID: 36323980 DOI: 10.1007/s11517-022-02687-w
    Early detection and diagnosis of brain tumors are essential for early intervention and eventually successful treatment plans leading to either a full recovery or an increase in the patient lifespan. However, diagnosis of brain tumors is not an easy task since it requires highly skilled professionals, making this procedure both costly and time-consuming. The diagnosis process relying on MR images gets even harder in the presence of similar objects in terms of their density, size, and shape. No matter how skilled professionals are, their task is still prone to human error. The main aim of this work is to propose a system that can automatically classify and diagnose glioma brain tumors into one of the four tumor types: (1) necrosis, (2) edema, (3) enhancing, and (4) non-enhancing. In this paper, we propose a combined texture discrete wavelet transform (DWT) and statistical features based on the first- and second-order features for the accurate classification and diagnosis of multiclass glioma tumors. Four well-known classifiers, namely, support vector machines (SVM), random forest (RF), multilayer perceptron (MLP), and naïve Bayes (NB), are used for classification. The BraTS 2018 dataset is used for the experiments, and with the combined DWT and statistical features, the RF classifier achieved the highest average accuracy whether for separated modalities or combined modalities. The highest average accuracy of 89.59% and 90.28% for HGG and LGG, respectively, was reported in this paper. It has also been observed that the proposed method outperforms similar existing methods reported in the extant literature.
  12. Mohd Radzi SF, Hassan MS, Mohd Radzi MAH
    BMC Med Inform Decis Mak, 2022 Nov 24;22(1):306.
    PMID: 36434656 DOI: 10.1186/s12911-022-02050-x
    BACKGROUND: In healthcare area, big data, if integrated with machine learning, enables health practitioners to predict the result of a disorder or disease more accurately. In Autistic Spectrum Disorder (ASD), it is important to screen the patients to enable them to undergo proper treatments as early as possible. However, difficulties may arise in predicting ASD occurrences accurately, mainly caused by human errors. Data mining, if embedded into health screening practice, can help to overcome the difficulties. This study attempts to evaluate the performance of six best classifiers, taken from existing works, at analysing ASD screening training dataset.

    RESULT: We tested Naive Bayes, Logistic Regression, KNN, J48, Random Forest, SVM, and Deep Neural Network algorithms to ASD screening dataset and compared the classifiers' based on significant parameters; sensitivity, specificity, accuracy, receiver operating characteristic, area under the curve, and runtime, in predicting ASD occurrences. We also found that most of previous studies focused on classifying health-related dataset while ignoring the missing values which may contribute to significant impacts to the classification result which in turn may impact the life of the patients. Thus, we addressed the missing values by implementing imputation method where they are replaced with the mean of the available records found in the dataset.

    CONCLUSION: We found that J48 produced promising results as compared to other classifiers when tested in both circumstances, with and without missing values. Our findings also suggested that SVM does not necessarily perform well for small and simple datasets. The outcome is hoped to assist health practitioners in making accurate diagnosis of ASD occurrences in patients.

  13. Zaini N, Ean LW, Ahmed AN, Abdul Malek M, Chow MF
    Sci Rep, 2022 Oct 20;12(1):17565.
    PMID: 36266317 DOI: 10.1038/s41598-022-21769-1
    Rapid growth in industrialization and urbanization have resulted in high concentration of air pollutants in the environment and thus causing severe air pollution. Excessive emission of particulate matter to ambient air has negatively impacted the health and well-being of human society. Therefore, accurate forecasting of air pollutant concentration is crucial to mitigate the associated health risk. This study aims to predict the hourly PM2.5 concentration for an urban area in Malaysia using a hybrid deep learning model. Ensemble empirical mode decomposition (EEMD) was employed to decompose the original sequence data of particulate matter into several subseries. Long short-term memory (LSTM) was used to individually forecast the decomposed subseries considering the influence of air pollutant parameters for 1-h ahead forecasting. Then, the outputs of each forecast were aggregated to obtain the final forecasting of PM2.5 concentration. This study utilized two air quality datasets from two monitoring stations to validate the performance of proposed hybrid EEMD-LSTM model based on various data distributions. The spatial and temporal correlation for the proposed dataset were analysed to determine the significant input parameters for the forecasting model. The LSTM architecture consists of two LSTM layers and the data decomposition method is added in the data pre-processing stage to improve the forecasting accuracy. Finally, a comparison analysis was conducted to compare the performance of the proposed model with other deep learning models. The results illustrated that EEMD-LSTM yielded the highest accuracy results among other deep learning models, and the hybrid forecasting model was proved to have superior performance as compared to individual models.
  14. Jameel SK, Aydin S, Ghaeb NH, Majidpour J, Rashid TA, Salih SQ, et al.
    Biomolecules, 2022 Dec 16;12(12).
    PMID: 36551316 DOI: 10.3390/biom12121888
    Corneal diseases are the most common eye disorders. Deep learning techniques are used to perform automated diagnoses of cornea. Deep learning networks require large-scale annotated datasets, which is conceded as a weakness of deep learning. In this work, a method for synthesizing medical images using conditional generative adversarial networks (CGANs), is presented. It also illustrates how produced medical images may be utilized to enrich medical data, improve clinical decisions, and boost the performance of the conventional neural network (CNN) for medical image diagnosis. The study includes using corneal topography captured using a Pentacam device from patients with corneal diseases. The dataset contained 3448 different corneal images. Furthermore, it shows how an unbalanced dataset affects the performance of classifiers, where the data are balanced using the resampling approach. Finally, the results obtained from CNN networks trained on the balanced dataset are compared to those obtained from CNN networks trained on the imbalanced dataset. For performance, the system estimated the diagnosis accuracy, precision, and F1-score metrics. Lastly, some generated images were shown to an expert for evaluation and to see how well experts could identify the type of image and its condition. The expert recognized the image as useful for medical diagnosis and for determining the severity class according to the shape and values, by generating images based on real cases that could be used as new different stages of illness between healthy and unhealthy patients.
  15. Kolekar S, Gite S, Pradhan B, Alamri A
    Sensors (Basel), 2022 Dec 10;22(24).
    PMID: 36560047 DOI: 10.3390/s22249677
    The intelligent transportation system, especially autonomous vehicles, has seen a lot of interest among researchers owing to the tremendous work in modern artificial intelligence (AI) techniques, especially deep neural learning. As a result of increased road accidents over the last few decades, significant industries are moving to design and develop autonomous vehicles. Understanding the surrounding environment is essential for understanding the behavior of nearby vehicles to enable the safe navigation of autonomous vehicles in crowded traffic environments. Several datasets are available for autonomous vehicles focusing only on structured driving environments. To develop an intelligent vehicle that drives in real-world traffic environments, which are unstructured by nature, there should be an availability of a dataset for an autonomous vehicle that focuses on unstructured traffic environments. Indian Driving Lite dataset (IDD-Lite), focused on an unstructured driving environment, was released as an online competition in NCPPRIPG 2019. This study proposed an explainable inception-based U-Net model with Grad-CAM visualization for semantic segmentation that combines an inception-based module as an encoder for automatic extraction of features and passes to a decoder for the reconstruction of the segmentation feature map. The black-box nature of deep neural networks failed to build trust within consumers. Grad-CAM is used to interpret the deep-learning-based inception U-Net model to increase consumer trust. The proposed inception U-net with Grad-CAM model achieves 0.622 intersection over union (IoU) on the Indian Driving Dataset (IDD-Lite), outperforming the state-of-the-art (SOTA) deep neural-network-based segmentation models.
  16. Du J, Zhang M, Teng X, Wang Y, Lim Law C, Fang D, et al.
    Food Res Int, 2023 Feb;164:112420.
    PMID: 36738024 DOI: 10.1016/j.foodres.2022.112420
    Vegetable sauerkraut is a traditional fermented food. Due to oxidation reactions that occur during storage, the quality and flavor in different periods will change. In this study, the quality evaluation and flavor characteristics of 13 groups of vegetable sauerkraut samples with different storage time were analyzed by using physical and chemical parameters combined with electronic nose. Photographs of samples of various periods were collected, and a convolutional neural network (CNN) framework was established. The relationship between total phenol oxidative decomposition and flavor compounds was linearly negatively correlated. The vegetable sauerkraut during storage can be divided into three categories (full acceptance period, acceptance period and unacceptance period) by principal component analysis and Fisher discriminant analysis. The CNN parameters were fine-tuned based on the classification results, and its output results can reflect the quality changes and flavor characteristics of the samples, and have better fitting, prediction capabilities. After 50 epochs of the model, the accuracy of three sets of data namely training set, validation set and test set recorded 94%, 85% and 93%, respectively. In addition, the accuracy of CNN in identifying different quality sauerkraut was 95.30%. It is proved that the convolutional neural network has excellent performance in predicting the quality of Szechuan Sauerkraut with high reliability.
  17. Ying Ying Tang D, Wayne Chew K, Ting HY, Sia YH, Gentili FG, Park YK, et al.
    Bioresour Technol, 2023 Feb;370:128503.
    PMID: 36535615 DOI: 10.1016/j.biortech.2022.128503
    This study presented a novel methodology to predict microalgae chlorophyll content from colour models using linear regression and artificial neural network. The analysis was performed using SPSS software. Type of extractant solvents and image indexes were used as the input data for the artificial neural network calculation. The findings revealed that the regression model was highly significant, with high R2 of 0.58 and RSME of 3.16, making it a useful tool for predicting the chlorophyll concentration. Simultaneously, artificial neural network model with R2 of 0.66 and low RMSE of 2.36 proved to be more accurate than regression model. The model which fitted to the experimental data indicated that acetone was a suitable extraction solvent. In comparison to the cyan-magenta-yellow-black model in image analysis, the red-greenblue model offered a better correlation. In short, the estimation of chlorophyll concentration using prediction models are rapid, more efficient, and less expensive.
  18. Ibrahim A, Ismail A, Juahir H, Iliyasu AB, Wailare BT, Mukhtar M, et al.
    Mar Pollut Bull, 2023 Feb;187:114493.
    PMID: 36566515 DOI: 10.1016/j.marpolbul.2022.114493
    The study investigates the latent pollution sources and most significant parameters that cause spatial variation and develops the best input for water quality modelling using principal component analysis (PCA) and artificial neural network (ANN). The dataset, 22 water quality parameters were obtained from Department of Environment Malaysia (DOE). The PCA generated six significant principal component scores (PCs) which explained 65.40 % of the total variance. Parameters for water quality variation are mainlyrelated to mineral components, anthropogenic activities, and natural processes. However, in ANN three input combination models (ANN A, B, and C) were developed to identify the best model that can predict water quality index (WQI) with very high precision. ANN A model appears to have the best prediction capacity with a coefficient of determination (R2) = 0.9999 and root mean square error (RMSE) = 0.0537. These results proved that the PCA and ANN methods can be applied as tools for decision-making and problem-solving for better managing of river quality.
  19. Zaini N, Ean LW, Ahmed AN, Malek MA
    Environ Sci Pollut Res Int, 2022 Jan;29(4):4958-4990.
    PMID: 34807385 DOI: 10.1007/s11356-021-17442-1
    Rapid progress of industrial development, urbanization and traffic has caused air quality reduction that negatively affects human health and environmental sustainability, especially among developed countries. Numerous studies on the development of air quality forecasting model using machine learning have been conducted to control air pollution. As such, there are significant numbers of reviews on the application of machine learning in air quality forecasting. Shallow architectures of machine learning exhibit several limitations and yield lower forecasting accuracy than deep learning architecture. Deep learning is a new technology in computational intelligence; thus, its application in air quality forecasting is still limited. This study aims to investigate the deep learning applications in time series air quality forecasting. Owing to this, literature search is conducted thoroughly from all scientific databases to avoid unnecessary clutter. This study summarizes and discusses different types of deep learning algorithms applied in air quality forecasting, including the theoretical backgrounds, hyperparameters, applications and limitations. Hybrid deep learning with data decomposition, optimization algorithm and spatiotemporal models are also presented to highlight those techniques' effectiveness in tackling the drawbacks of individual deep learning models. It is clearly stated that hybrid deep learning was able to forecast future air quality with higher accuracy than individual models. At the end of the study, some possible research directions are suggested for future model development. The main objective of this review study is to provide a comprehensive literature summary of deep learning applications in time series air quality forecasting that may benefit interested researchers for subsequent research.
  20. Zhang Q, Chong CW, Abdullah AR, Ali MH
    Comput Intell Neurosci, 2021;2021:1370180.
    PMID: 34691167 DOI: 10.1155/2021/1370180
    At present, the development speed of international trade cannot catch up with the economic development speed, and the insufficient development speed of international trade will directly affect the rapid development of national economy. In order to solve the problem of international trade, the overall optimal scheduling of trade vehicles and the optimal planning of trade transportation path are very important to improve enterprise services, reduce enterprise costs, increase enterprise benefits, and enhance enterprise competitiveness. The second development of the program is based on the programming interface provided by Baidu map. This paper proposes a neural network algorithm for genetic optimization of multiple mutations, which overcomes the shortcoming of traditional genetic algorithm population "ten" character distribution by mixing multiple coding methods, and enhances the local search ability of genetic algorithm by introducing a new large-mutation small-range search population. The example application shows that the optimization method can realize the optimization of international trade path under real road conditions and greatly improve the work efficiency of actual trade.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links