It is essential to investigate the physicochemical and thermal properties of choline chloride (ChCl)-based deep eutectic solvents (DESs) as hydrogen bond acceptor (HBA) with various hydrogen bond donor (HBD) functional groups, such as α-hydroxy acid (lactic acid) or polyol (glycerol). It is important to consider how molar ratios impact these properties, as they may be altered for particular applications. This study aimed to examine the physicochemical and thermal properties of ChCl-based DESs with lactic acid (LA) or glycerol (Gly) at different molar ratios (1:2-1:10). The pH of ChCl:LA (0-1.0) is lower than that of ChCl:Gly (4.0-5.0) because of the hydrogen bonds between ChCl and LA. A higher amount of LA/Gly resulted in higher densities of ChCl:Gly (1.20-1.22 g cm-3) and ChCl:LA (1.16-1.19 g cm-3) due to the stronger hydrogen bonds and tighter packing of the molecules. The refractive index of ChCl:Gly (1.47-1.48) was higher than ChCl:LA (1.44-1.46), with a trend similar to density. The viscosities of ChCl:Gly (0.235-0.453 Pa s) and ChCl:LA (0.04-0.06 Pa s) increased with increasing LA/Gly molar ratio but decreased with temperature due to the high kinetic energy from heating, lowering the attractive forces between molecules. The activation energy for ChCl:LA (15.29-15.55 kJ mol-1) is greater than for ChCl:Gly (7.77-8.78 kJ mol-1), indicating that ChCl:LA has a greater viscosity-temperature dependence than ChCl:Gly. The DESs decomposition temperatures are 179.73-192.14 °C for ChCl:LA and 189.69-197.41 °C for ChCl:Gly. Freezing temperatures are correlated with the molecular weight of HBDs, with lower values causing a larger decrease in freezing temperatures. The interactions of polyols with anions were stronger than those of α-hydroxy acids with anions. The variations in HBA to HBD molar ratios affected DESs properties, providing a fundamental understanding of the properties critical for their diverse applications.
Environmental issues have resulted in the forming of sustainable materials, including natural fiber-reinforced PLA composites; nonetheless, this composite has low water resistance, resulting in poor composite performance. This research aims to investigate the impact of adding a small amount of graphene nanoplatelets (GNP) on the water absorption (WA) characteristic of bamboo/kenaf-reinforced PLA hybrid composites. The physical behavior and water resistance of the composites, as well as the mechanical performance and surface after 14 days of immersion, were comprehensively investigated. The study discovered that adding a small amount of GNP to composites increased their density, with the highest density of 1.6326 g/cm3 (1GBK), and altered the chemical composition's transmittance. Also, the inclusion of GNP increases the composite's crystallinity. Furthermore, the addition of GNP resulted in a decline in WA, with the lowest absorption being 4.95 % (1GBK), which is supported by the composites' increased contact angle. After 14 days of immersion, the GNP-filled composites were superior to the BK sample in terms of mechanical properties. When fibers absorb water, their surface degrades because the fibers are swelling, but GNP functions as a water barrier, preventing surface degradation due to inhibition of fiber swelling. This study highlights the potential for a straightforward and economical method to address the limited water resistance of bamboo/kenaf-reinforced PLA hybrid composites, a limitation that hinders their widespread use.
Nanocellulose-graphene hybrid composites for high-performance uses have been the focus of recent research. In contrast to graphene, which has great conductivity and mechanical strength, nanocellulose possesses special qualities like renewability and biocompatibility but lacks electrical conductivity. Since graphene-nanocellulose has such promising features, efforts to make flexible electronic composites employing them have accelerated. However, the environmental impacts are needed to be addressed prior to the applications of these hybrid composites. This review article explores environmental aspects for nanocellulose-graphene hybrid composites because of their sustainability, which is a major step in the right direction. The article also emphasizes how these composites have the potential to transform several industries and open the door to a more environmentally friendly future. This paper explores into the most recent developments in nanocellulose-graphene hybrid composites, highlighting its environmental benefits and adaptability. These composites offer remarkable performance by combining the strength and conductivity of graphene with the mechanical, electrical, and thermal capabilities of nanocellulose.
Nanocellulose, obtained from natural cellulose, has attracted considerable interest for its distinctive properties and wide-ranging potential applications. Studies suggest that nanocellulose improves the thermal, mechanical, and barrier properties of conventional cellulose. This review investigates the production, properties, approach, and application of nanocellulose from various sources in agriculture. The main role play of cellulose-nanocomposite is discussed as a seed coating agent to improve seed dispersal, germination, protection against fungi and insects, plant growth promoter, adsorption of targeted pollutants, providing water and nutrient retention, and other advantages. As a nobility, we included all mechanical, chemical, and static culture approaches to the production procedure of nanocellulose and its application as a nanocarrier in soil, including the unique properties of nanocellulose, such as its high surface area, inherent hydrophilicity, and ease of surface modification. Here, methods such as melt compounding, solution casting, and in situ polymerization were evaluated to incorporate nanoparticles into cellulose materials and produce nanocellulose and cellulose-nanocomposites with improved strength, stability, water resistance, and reduced gas permeability. The commercialization faces challenges such as high production costs, scalability issues, and the need for more research on environmental impacts and plant interactions. Despite these hurdles, this field is promising, with ongoing advancements likely to yield new and improved agricultural materials. This review thoroughly examines the innovative application of nanocellulose in slow and controlled-release fertilizers and pesticides, to transform nutrient management, boost crop productivity, and minimize the environmental impact.
A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.
The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
In the title salt, C14H18N2(2+) · 2C9H5N4O(-), the 1,1'-diethyl-4,4'-bipyridine-1,1'-diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3-tetracyano-2-ethoxypropenide anion, the two independent -C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0(2) and 23.0(2)°. The ionic components are linked by C-H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.
The insecticide chlorpyrifos is extensively used in the humid tropics for insect control on crops and soils. Chlorpyrifos degradation and mineralization was studied under laboratory conditions to characterize the critical factors controlling the degradation and mineralization in three humid tropical soils from Malaysia. The degradation was fastest in moist soils (t1/2 53.3-77.0 days), compared to dry (t1/2 49.5-120 days) and wet soils (t1/2 63.0-124 days). Degradation increased markedly with temperature with activation energies of 29.0-76.5 kJ mol(-1). Abiotic degradation which is important for chlorpyrifos degradation in sub-soils containing less soil microbial populations resulted in t½ of 173-257 days. Higher chlorpyrifos dosages (5-fold) which are often applied in the tropics due to severe insects infestations caused degradation and mineralization rates to decrease by 2-fold. The mineralization rates were more sensitive to the chlorpyrifos application rates reflecting that degradation of metabolites is rate limiting and the toxic effects of some of the metabolites produced. Despite that chlorpyrifos is frequently used and often in larger amounts on tropical soils compared with temperate soils, higher temperature, moderate moisture and high activity of soil microorganisms will stimulate degradation and mineralization.
The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.
Hydrodistillation of the fresh leaves of Alpinia mutica afforded 0.005% colourless essential oil. GC and GC-MS analysis revealed the presence of 33 components accounting for 92.9% of the total oil, dominated by 20 sesquiterpenes (76.7%) and 10 monoterpenes (8.3%). The major constituent was found to be β-sesquiphellandrene which was 29.2% of the total oil. Soxhlet extraction, followed by repeated column chromatography of the dried leaves yielded two phenolic compounds, identified as 5,6-dehydrokawain and aniba dimer A, together with one amide assigned as auranamide. The structures of these compounds were determined by using spectroscopic analysis. Antibacterial screening of the essential oil, the crude and isolated compounds showed weak to moderate inhibitory activity.
The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+). The reaction temperature was varied from 650 to 850 degrees C, while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min, respectively. Results show that nanosorbents synthesised at a reaction temperature of 650 degrees C had the smallest average diameter (75 nm), largest BET surface area (68.95 m2/g) and least amount of impurity (0.98 wt.% Fe). A series of batch-sorption tests were performed to evaluate the effects of initial pH, initial metal concentration and contact time on Ni2+ removal by the nanosorbents. The equilibrium data fitted well to Freundlich isotherm. The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type. Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step. This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature, is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.
Decomposition of oil palm fruit press fiber (FPF) to various liquid products in subcritical water was investigated using a high-pressure autoclave reactor with and without the presence of catalyst. When the reaction was carried in the absence of catalyst, the conversion of solid to liquid products increased from 54.9% at 483 K to 75.8% at 603 K. Simultaneously, the liquid yield increased from 28.8% to 39.1%. The liquid products were sub-categorized to bio-oil (benzene soluble, diethylether soluble, acetone soluble) and water soluble. When 10% ZnCl(2) was added, the conversion increased slightly but gaseous products increased significantly. However, when 10% Na(2)CO(3) and 10% NaOH were added independently, the solid conversion increased to almost 90%. In the presence of catalyst, the liquid products were mainly bio-oil compounds. Although solid conversion increased at higher reaction temperature, but the liquid yield did not increase at higher temperature.
The phytochemical study of the bark of Malaysian Phoebe scortechinii (Lauraceae) has resulted in the isolation and identification of two new proaporphine alkaloids; (+)-scortechiniine A (1) and (+)-scortechiniine B (2) together with two known proaporphines; (-)-hexahydromecambrine A (3), (-)-norhexahydromecambrine A (4), and one aporphine; norboldine (5). Structural elucidations of these alkaloids were performed using spectroscopic methods especially 1D and 2D (1)H and (13)C NMR.
Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications.
A lamellar liquid crystalline region was identified in a typical skin lotion formulation system composed of a mixture of isostearic acid and triethanolamine (TEA) at 65:35 (w/w), decane, and water (the temperature was controlled at 30 degrees C). The interlayer spacings were determined by a small-angle X-ray diffraction technique. Incorporation of a natural dye, curcumin, resulted in lower interlayer spacings and higher penetration of water into the layered structure. However, the higher penetration of water was not apparent at all compositions of isostearic acid:TEA, decane, and water.
Solid polymer blend electrolyte membranes (SPBEM) composed of chitosan and dextran with the incorporation of various amounts of lithium perchlorate (LiClO4) were synthesized. The complexation of the polymer blend electrolytes with the salt was examined using FTIR spectroscopy and X-ray diffraction (XRD). The morphology of the SPBEs was also investigated using field emission scanning electron microscopy (FESEM). The ion transport behavior of the membrane films was measured using impedance spectroscopy. The membrane with highest LiClO4 content was found to exhibit the highest conductivity of 5.16 × 10-3 S/cm. Ionic (ti) and electronic (te) transference numbers for the highest conducting electrolyte were found to be 0.98 and 0.02, respectively. Electrochemical stability was estimated from linear sweep voltammetry and found to be up to ~2.3V for the Li+ ion conducting electrolyte. The only existence of electrical double charging at the surface of electrodes was evidenced from the absence of peaks in cyclic voltammetry (CV) plot. The discharge slope was observed to be almost linear, confirming the capacitive behavior of the EDLC. The performance of synthesized EDLC was studied using CV and charge-discharge techniques. The highest specific capacitance was achieved to be 8.7 F·g-1 at 20th cycle. The efficiency (η) was observed to be at 92.8% and remained constant at 92.0% up to 100 cycles. The EDLC was considered to have a reasonable electrode-electrolyte contact, in which η exceeds 90.0%. It was determined that equivalent series resistance (Resr) is quite low and varies from 150 to 180 Ω over the 100 cycles. Energy density (Ed) was found to be 1.21 Wh·kg-1 at the 1st cycle and then remained stable at 0.86 Wh·kg-1 up to 100 cycles. The interesting observation is that the value of Pd increases back to 685 W·kg-1 up to 80 cycles.
A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs.
In this study, acidic deep eutectic solvents (DES) synthesized from various organic carboxylic acid hydrogen bond donors were applied to lignocellulosic oil palm empty fruit bunch (EFB) pretreatment. The influence of functional group types on acid and their molar ratios with hydrogen bond acceptor on lignin extraction were evaluated. The result showed presence of hydroxyl group and short alkyl chain enhanced biomass fractionation and lignin extraction. Choline chloride:lactic acid (CC-LA) with the ratio of 1:15 and choline chloride:formic acid (CC-FA) with 1:2 ratio extracted more than 60 wt% of lignin. CC-LA DES-extracted lignin (DEEL) exhibited comparable reactivity with technical and commercial lignin based on its phenolic hydroxyl content (3.33-3.72 mmol/glignin). Also, the DES-pretreated EFB comprised of enriched glucan content after biopolymer fractionation. Both DES-pretreated EFB and DEEL can be potential feedstock for subsequent conversion processes. This study presented DES as an effective and facile pretreatment method for reactive lignin extraction.
In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.