Displaying publications 1561 - 1580 of 1782 in total

Abstract:
Sort:
  1. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: Cell Line, Tumor
  2. Nailwal H, Sharma S, Mayank AK, Lal SK
    Cell Death Dis, 2015 May 21;6:e1768.
    PMID: 25996295 DOI: 10.1038/cddis.2015.131
    The interplay between influenza virus and host factors to support the viral life cycle is well documented. Influenza A virus (IAV) proteins interact with an array of cellular proteins and hijack host pathways which are at the helm of cellular responses to facilitate virus invasion. The multifaceted nature of the ubiquitination pathway for protein regulation makes it a vulnerable target of many viruses including IAV. To this end we conducted a yeast two-hybrid screen to search for cellular ubiquitin ligases important for influenza virus replication. We identified host protein, RING finger protein 43 (RNF43), a RING-type E3 ubiquitin ligase, as a novel interactor of nucleoprotein (NP) of IAV and an essential partner to induce NP-driven p53-mediated apoptosis in IAV-infected cells. In this study, we demonstrate that IAV leads to attenuation of RNF43 transcripts and hence its respective protein levels in the cellular milieu whereas in RNF43 depleted cells, viral replication was escalated several folds. Moreover, RNF43 polyubiquitinates p53 which further leads to its destabilization resulting in a decrease in induction of the p53 apoptotic pathway, a hitherto unknown process targeted by NP for p53 stabilization and accumulation. Collectively, these results conclude that NP targets RNF43 to modulate p53 ubiquitination levels and hence causes p53 stabilization which is conducive to an enhanced apoptosis level in the host cells. In conclusion, our study unravels a novel strategy adopted by IAV for utilizing the much conserved ubiquitin proteasomal pathway.
    Matched MeSH terms: Cell Line
  3. Rati Selvaraju T, Khaza'ai H, Vidyadaran S, Sokhini Abd Mutalib M, Ramachandran V, Hamdan Y
    Int J Vitam Nutr Res, 2014;84(3-4):140-51.
    PMID: 26098478 DOI: 10.1024/0300-9831/a000201
    Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100-300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76% and 79% in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2%, 95.0%, and 95.6%, respectively (p<0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.
    Matched MeSH terms: Cell Line, Tumor
  4. Kadir NH, David R, Rossiter JT, Gooderham NJ
    Toxicology, 2015 Aug 6;334:59-71.
    PMID: 26066520 DOI: 10.1016/j.tox.2015.06.002
    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.
    Matched MeSH terms: Cell Line
  5. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
    Matched MeSH terms: Cell Line
  6. Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W, Silwal-Pandit L, et al.
    Genes Dev., 2015 Jun 15;29(12):1298-315.
    PMID: 26080815 DOI: 10.1101/gad.263202.115
    Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.
    Matched MeSH terms: Cell Line, Tumor
  7. Abu N, Mohamed NE, Yeap SK, Lim KL, Akhtar MN, Zulfadli AJ, et al.
    Anticancer Agents Med Chem, 2015;15(7):905-15.
    PMID: 26179368
    Flavokawain A is a chalcone that can be found in the kava-kava plant (Piper methsyticum) extract. The kava-kava plant has been reported to possess anti-cancer, anti-inflammatory and antinociceptive activities. The state of the immune system, and the inflammatory process play vital roles in the progression of cancer. The immunomodulatary effects and the anti-inflammatory effects of flavokawain A in a breast cancer murine model have not been studied yet. Thus, this study aimed to elucidate the basic mechanism as to how flavokawain A regulates and enhance the immune system as well as impeding the inflammatory process in breast cancer-challenged mice. Based on our study, it is interesting to note that flavokawain A increased the T cell population; both Th1 cells and CTLs, aside from the natural killer cells. The levels of IFN-γ and IL-2 were also elevated in the serum of flavokawain A-treated mice. Apart from that, flavokawain A also decreased the weight and volume of the tumor, and managed to induce apoptosis in them. In terms of inflammation, flavokawain A-treated mice had reduced level of major pro-inflammatory mediators; NO, iNOS, NF-KB, ICAM and COX-2. Overall, flavokawain A has the potential to not only enhance antitumor immunity, but also prevents the inflammatory process in a cancer-prone microenvironment.
    Matched MeSH terms: Cell Line, Tumor
  8. Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al.
    Sci Rep, 2015 Jun 25;5:11544.
    PMID: 26108872 DOI: 10.1038/srep11544
    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways.
    Matched MeSH terms: Cell Line, Tumor
  9. Tan GM, Looi CY, Fernandez KC, Vadivelu J, Loke MF, Wong WF
    Sci Rep, 2015;5:11046.
    PMID: 26078204 DOI: 10.1038/srep11046
    Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
    Matched MeSH terms: Cell Line, Transformed
  10. Chan CK, Supriady H, Goh BH, Kadir HA
    J Ethnopharmacol, 2015 Jun 20;168:291-304.
    PMID: 25861953 DOI: 10.1016/j.jep.2015.03.072
    Elephantopus scaber also known as Elephant's foot (Asteraceae family) has a plethora of traditional applications including dysuria, diarrhea, dysentery, leukemia and cancer. This study aimed to investigate the apoptosis inducing effects of E. scaber and the underlying mechanisms in HCT116 colorectal cell line.
    Matched MeSH terms: Cell Line
  11. Taha H, Looi CY, Arya A, Wong WF, Yap LF, Hasanpourghadi M, et al.
    PLoS One, 2015;10(5):e0126126.
    PMID: 25946039 DOI: 10.1371/journal.pone.0126126
    Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.
    Matched MeSH terms: Cell Line, Tumor
  12. Ong JY, Yong PV, Lim YM, Ho AS
    Life Sci, 2015 Aug 15;135:158-64.
    PMID: 25896662 DOI: 10.1016/j.lfs.2015.03.019
    The compound 2-methoxy-1,4-naphthoquinone (MNQ) was previously shown to be cytotoxic against several cancer cell lines, but its mode of action is poorly understood. In this study, we aimed to explore the molecular mechanism of MNQ-induced cytotoxicity of A549 lung adenocarcinoma cells.
    Matched MeSH terms: Cell Line, Tumor
  13. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Cell Line, Tumor
  14. Oon CE, Strell C, Yeong KY, Östman A, Prakash J
    Eur J Pharmacol, 2015 Jun 15;757:59-67.
    PMID: 25843411 DOI: 10.1016/j.ejphar.2015.03.064
    Gemcitabine remains the standard treatment for pancreatic cancer, although most patients acquire resistance to the therapy. Up-regulated in pancreatic cancer, SIRT1 is involved in tumorigenesis and drug resistance. However the mechanism through which SIRT1 regulates drug sensitivity in cancer cells is mainly unknown. We hypothesise that inhibiting SIRT1 activity may increase sensitivity of pancreatic cancer cells to gemcitabine treatment through the regulation of apototic cell death, cell cycle, epithelial-mesenschymal-transition (EMT) and senescence. We demonstrate that gemcitabine or 6-Chloro-2,3,4,9-tetrahydro-1 H-Carbazole-1-carboxamide (EX527) SIRT1 inhibitor reduces PANC-1 cell proliferation in vitro. EX527 enhanced sensitivity of PANC-1 cells to gemcitabine treatment through increased apoptosis. However, EX527 displayed no beneficial effect either as a monotreatment or in combination with gemcitabine in the modulation of cell cycle progression. Combination treatment did not reverse the two phenomena known to affect drug sensitivity, namely EMT and senescence, which are both induced by gemcitabine. Unexpectedly, EX527 promoted PANC-1 xenograft tumour growth in SCID mice compared to control group. Dual tX527 and gemcitabine displayed no synergistic effect compared to gemcitabine alone. The study reveals that SIRT1 is involved in chemoresistance and that inhibiting SIRT1 activity with EX527 sensitised PANC-1 cells to gemcitabine treatment in vitro. Sensitisation of cells is shown to be mainly through induction of micronuclei formation as a result of DNA damage and apoptosis in vitro. However, the absence of positive combinatorial effects in vivo indicates possible effects on cells of the tumor microenvironment and suggests caution regarding the clinical relevance of tissue culture findings with EX527.
    Matched MeSH terms: Cell Line, Tumor
  15. Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, et al.
    J Ethnopharmacol, 2015 May 26;166:270-8.
    PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039
    Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer.
    Matched MeSH terms: Cell Line, Tumor
  16. Sosroseno W, Bird PS, Seymour GJ
    J Microbiol Immunol Infect, 2003 Dec;36(4):229-35.
    PMID: 14723250
    The aim of this study was to determine the role of intracellular proteins in phagocytosis of opsonized Porphyromonas gingivalis by RAW264.7 cells, a murine macrophage-like cell line. This periodontopathogen was grown anaerobically and opsonized with an IgG2a murine monoclonal anti-P. gingivalis lipopolysaccharide antibody. RAW264.7 cells were preincubated with protein tyrosine kinase inhibitors (staurosporine and genistein), protein kinase C inhibitors (phorbol myristic acetate and bisindolylmaleimide), a serine/threonine phosphatase inhibitor (okadaic acid), a phosphatidylinositol 3-kinase inhibitor (worthmannin), phospholipase A2 inhibitors (bromophenacyl bromide and nordihydroguaiaretic acid), phospholipase C inhibitors (p-chloromercuriphenyl sulfonate and neomycin sulfate), an actin-filament depolymerizer (cytochalasin D), and a microtubule disrupting agent (colchicine). Inhibitor-treated macrophages were then incubated with the opsonized P. gingivalis and the phagocytosed cells determined microscopically. The results showed the percentage of the phagocytosed organisms decreased when the cells were preincubated with protein tyrosine kinase, protein kinase C, protein phosphatase and phosphatidylinositol 3-kinase inhibitors. Of interest, preincubation with phorbol myristic acetate for 30 min increased the ability of RAW264.7 cells to phagocytose the opsonized organisms. Phospholipase A2 and phospholipase C inhibitors only slightly reduced the number of phagocytosed organisms. The results indicated that opsonophagocytosis of P. gingivalis by RAW264.7 cells might be determined by the activation of protein tyrosine kinase, protein kinase C, protein phosphatases, and phosphatidylinositol 3-kinase inhibitor. Both phospholipase A2 and phospholipase C would appear to be involved to a lesser extent. The opsonophagocytosis of this periodontopathogen would also appear to be dependent upon actin and microtubule polymerization.
    Matched MeSH terms: Cell Line
  17. Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, et al.
    Oncol Rep, 2018 Aug;40(2):669-681.
    PMID: 29845263 DOI: 10.3892/or.2018.6461
    Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non‑small cell lung cancer (NSCLC). Ιnitially, we sorted two subpopulations known as the triple‑positive (EpCAM+/CD166+/CD44+) and triple‑negative (EpCAM-/CD166-/CD44-) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple‑positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5‑fluouracil and cisplatin with 80% expression of ALDH was observed in the triple‑positive subpopulation, compared to only 67% detected in the triple‑negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple‑positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple‑negative subpopulation on day 2. This was similarly observed on day 3 in the triple‑positive subpopulation with 36% higher cellular migration compared to the triple‑negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple‑positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple‑positive subpopulation demonstrated similar characteristics to CSCs compared to the triple‑negative subpopulation. It also confirmed the feasibility of using the triple‑positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.
    Matched MeSH terms: Cell Line, Tumor
  18. Kadivar A, Ibrahim Noordin M, Aditya A, Kamalidehghan B, Davoudi ET, Sedghi R, et al.
    Int J Mol Med, 2018 Jul;42(1):414-424.
    PMID: 29620139 DOI: 10.3892/ijmm.2018.3590
    Imatinib mesylate is an anti‑neoplastic targeted chemotherapeutic agent, which can inhibit tyrosine kinase receptors, including BCR‑ABL, platelet‑derived growth factor receptors (PDGFRs) and c‑Kit. Cellular processes, including differentiation, proliferation and survival are regulated by these receptors. The present study aimed to evaluate the antiproliferative effects of imatinib mesylate, and its effects on apoptotic induction and cell cycle arrest in breast cancer cell lines. In addition, the study aimed to determine whether the effects of this drug were associated with the mRNA and protein expression levels of PDGFR‑β, c‑Kit, and their corresponding ligands PDGF‑BB and stem cell factor (SCF), which may potentially modulate cell survival and proliferation. To assess the antiproliferative effects of imatinib mesylate, an MTS assay was conducted following treatment of cells with 2‑10 µM imatinib mesylate for 96, 120 and 144 h; accordingly the half maximal inhibitory concentration of imatinib mesylate was calculated for each cell line. In addition, the proapoptotic effects and cytostatic activity of imatinib mesylate were investigated. To evaluate the expression of imatinib‑targeted genes, PDGFR‑β, c‑Kit, PDGF‑BB and SCF, under imatinib mesylate treatment, mRNA expression was detected using semi‑quantitative polymerase chain reaction and protein expression was detected by western blot analysis in ZR‑75‑1 and MDA‑MB‑231 breast carcinoma cell lines. Treatment with imatinib mesylate suppressed cell proliferation, which was accompanied by apoptotic induction and cell cycle arrest in the investigated cell lines. In addition, PDGFR‑β, PDGF‑BB, c‑Kit and SCF were expressed in both breast carcinoma cell lines; PDGFR‑β and c‑Kit, as imatinib targets, were downregulated in response to imatinib mesylate treatment. The present results revealed that at least two potential targets of imatinib mesylate were expressed in the two breast carcinoma cell lines studied. In conclusion, the antiproliferative, cytostatic and proapoptotic effects of imatinib mesylate may be the result of a reduction in the expression of c‑Kit and PDGFR tyrosine kinase receptors, thus resulting in suppression of the corresponding ligand PDGF‑BB. Therefore, imatinib mesylate may be considered a promising target therapy for the future treatment of breast cancer.
    Matched MeSH terms: Cell Line, Tumor
  19. Majeed S, Aripin FHB, Shoeb NSB, Danish M, Ibrahim MNM, Hashim R
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:254-263.
    PMID: 31146998 DOI: 10.1016/j.msec.2019.04.041
    The aim of the current study was to biosynthesize the silver nanoparticles (AgNPs) from the bacterial strain of Bacillus cereus (ATCC 14579) extracellularly. When bacterial extract was challenged with 1 mM silver nitrate (AgNO3) the color of the extract changed into brown confirms the formation of nanoparticles. These nanoparticles were capped with bovine serum albumin (BSA). UV- visible spectroscopy showed the absorption peak at 420 nm indicates the formation of AgNPs. Fourier Infra -red (FTIR) attenuated total reflection (ATR) spectroscopy showed amide and amine group associated with AgNPs that stabilizes the nanoparticles. Energy dispersive x-ray spectroscopy (EDX) showed a strong peak of silver confirms the presence of silver. Thermo gravimetric analysis (TGA) analysis was used to determine the protein degradation showed less protein degradation at higher temperature confirms the stability of nanoparticles. Transmission electron microscopy (TEM) showed the AgNPs are well dispersed and spherical, and 5.37 nm to 17.19 whereas albumin coated nanoparticles are size ranges from 11.26 nm to 23.85 nm. The anticancer effect of capped AgNPs (cAgNPs) showed the IC50 value against breast cancer MCF-7 at 80 μg/mL, intestinal colon cancer HCT- 116 60 μg/mL, and bone cancer osteosarcoma MG-63 cell line80 μg/mL while against normal fibroblast cells 3T3 cells showed the IC50 value at 140 μg/mL. Lactate dehydrogenase assay (LDH) showed higher toxicity on MCF-7, HCT-116, and MG-63 cells. The apoptotic study clearly showed the blebbing of membrane, chromatin condensation due to the production of reactive oxygen species (ROS) by ethidium bromide and acridine orange dual staining method. The DNA analysis showed the complete fragmentation of the DNA of treated cells when compared with control cells.
    Matched MeSH terms: Cell Line, Tumor
  20. Hii LW, Lim SE, Leong CO, Chin SY, Tan NP, Lai KS, et al.
    BMC Complement Altern Med, 2019 Sep 14;19(1):257.
    PMID: 31521140 DOI: 10.1186/s12906-019-2663-9
    BACKGROUND: Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy.

    METHODS: We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p cell lines most sensitive cell lines to SN extracts. This is the first report of C. nutans SN extracts acting in synergy with gemcitabine, the first line chemotherapy for pancreatic cancer, as compared to conventional monotherapy. In the presence of SN extracts, we can reduce the dose of gemcitabine 2.38-5.28 folds but still maintain the effects of gemcitabine in PDAC. SN extracts potentiated the killing of gemcitabine in PDAC by apoptosis. Bax was upregulated while bcl-2, cIAP-2, and XIAP levels were downregulated in SW1990 and BxPC3 cells treated with gemcitabine and SN extracts. The synergism was independent of TLR-4 expression in pancreatic cancer cells.

    CONCLUSION: These results provide strong evidence of C. nutans extracts being inefficacious as monotherapy for cancer. Hence, it should not be used as a total substitution for any chemotherapy agents. However, SN extracts may synergise with gemcitabine in the anti-tumor mechanism.

    Matched MeSH terms: Cell Line, Tumor
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links