METHODS: Isolation of compounds from G. segetum leaves was conducted using vacuum liquid chromatography (VLC) and column chromatography (CC). Two new compounds, namely 4,5,4'-trihydroxychalcone and 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol, together with stigmasterol and β-sitosterol were isolated from G. segetum methanol extract and their structures were determined spectroscopically. The presence of gallic acid and rutin in the extract was determined quantitatively by a validated HPLC method. G. segetum methanol extract and its constituents were investigated for their effects on chemotaxis, phagocytosis, β2 integrin (CD18) expression, and reactive oxygen species (ROS) of polymorphonuclear leukocytes (PMNs), lymphocytes proliferation, cytokine release and nitric oxide (NO) production of phagocytes.
RESULTS: All the samples significantly inhibited all the innate immune responses tested except CD 18 expression on surface of leukocytes. Among the samples, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol exhibited the strongest inhibitory on chemotaxis, phagocytosis, ROS and NO production. The compound exhibited exceptionally strong inhibitions on ROS and chemotaxis activities with IC50 values lower than the positive controls, aspirin and ibuprofen, respectively. 4,5,4'-Trihydroxychalcone revealed the strongest immunosuppressive activity on proliferation of lymphocytes (IC50 value of 1.52 μM) and on release of IL-1β (IC50 value of 6.69 μM). Meanwhile rutin was the most potent sample against release of TNF-α from monocytes (IC50, 16.96 μM).
CONCLUSION: The extract showed strong immunosuppressive effects on various components of the immune system and these activities were possibly contributed mainly by 4,5,4'-trihydroxychalcone, 8,8'-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol and rutin.
METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release.
RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate.
CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.
MATERIALS AND METHODS: Diabetic ADSCs were treated with DFO and compared to normal and non-treated diabetic ADSCs for expression of HIF-1α, VEGF, FGF-2 and SDF-1, at mRNA and protein levels, using qRT-PCR, western blotting and ELISA assay. Activity of matrix metalloproteinases -2 and -9 were measured using a gelatin zymography assay. Angiogenic potential of conditioned media derived from normal, DFO-treated and non-treated diabetic ADSCs were determined by in vitro (in HUVECs) and in vivo experiments including scratch assay, three-dimensional tube formation testing and surgical wound healing models.
RESULTS: DFO remarkably enhanced expression of noted genes by mRNA and protein levels and restored activity of matrix metalloproteinases -2 and -9. Compromised angiogenic potential of conditioned medium derived from diabetic ADSCs was restored by DFO both in vitro and in vivo experiments.
CONCLUSION: DFO preconditioning restored neovascularization potential of ADSCs derived from diabetic rats by affecting the HIF-1α pathway.