Displaying publications 141 - 160 of 2160 in total

Abstract:
Sort:
  1. Wong KC, Hag Ali DM, Boey PL
    Nat Prod Res, 2012;26(7):609-18.
    PMID: 21834640 DOI: 10.1080/14786419.2010.538395
    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*
  2. Phan CS, Kamada T, Vairappan CS
    Nat Prod Res, 2020 Apr;34(7):1008-1013.
    PMID: 30600714 DOI: 10.1080/14786419.2018.1543681
    Two new C15-acetogenins, 4-epi-isolaurallene (1) and 4-epi-itomanallene A (2) were isolated from a population of marine red alga Laurencia nangii Masuda from Carrington Reef. The structures of these compounds were determined intensively by NMR and HRESIMS data. Their configurations were elucidated by detailed comparison of chemical shifts, germinal protons splitting and NOE correlations with known and synthesized analogues. In addition, antibacterial activities of these compounds were evaluated. These compounds would serve as diastereomeric models for future reference. Since the isolaurallene, neolaurallene, 9-acetoxy-1,10,12-tribromo-4,7:6,13-bisepoxypentadeca-1,2-diene, itomanallene A and laurendecumallene A were isolated, compounds 1 and 2 were the sixth example of C15-acetogenin with dioxabicyclo[7.3.0]dodecene skeleton.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  3. Pang WY, Ahmad AL, Zaulkiflee ND
    J Environ Manage, 2019 Nov 01;249:109358.
    PMID: 31450197 DOI: 10.1016/j.jenvman.2019.109358
    The aim of this study is to evaluate the performance and antifouling properties of polyethersulfone (PES) membrane incorporated with dual nanofiller, zinc oxide (ZnO) and multi-walled carbon nanotube (MWCNT). The synergistic effect of the these nanofillers in PES membrane is studied by blending different ratio of ZnO/MWCNT nanofiller into the PES membrane. The fabricated membranes were characterized in terms of cross-section and surface morphology, surface hydrophilicity, pore size and porosity. The filtration performance of the membranes was tested using 50 mg/L humic acid (HA) solution as model solution. SEM image and gravimetric evaluation reported that the incorporation of both MWCNT and ZnO into the PES membrane improved porosity significantly up to 46.02%. Lower water contact angle of PES membrane incorporated with equal ratio of MWCNT and ZnO (PES 3) revealed that it has neat PES membrane properties and more hydrophilic membrane surface than single filler. PES 3 outperform other membranes with excellent HA permeate flux of 40.00 L/m2.h and rejection of 88.51%. Due to hydrophilic membrane surface, PES 3 membrane demonstrate efficient antifouling properties with lower relative flux reduction (RFR) and higher flux recovery ratio (FRR). PES 3 also showed notable antibacterial properties with less bacterial attached to the membrane compared to neat PES membrane (PES 0).
    Matched MeSH terms: Anti-Bacterial Agents
  4. Khaw YC, Faisham WI
    Malays Orthop J, 2019 Jul;13(2):56-58.
    PMID: 31467655 DOI: 10.5704/MOJ.1907.012
    Scapular abscess is a rare clinical diagnosis. This is a report of an atypical case of extensive intramuscular scapular abscess involving the anterior and posterior aspects of the scapula with extension into the axillary region following minor trauma in a young healthy adolescent, describing a single posterolateral approach to the scapula to evacuate the abscess. Following surgical drainage and antibiotic treatment, patient recovered without any complication.
    Matched MeSH terms: Anti-Bacterial Agents
  5. Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M
    Phytochemistry, 2001 Sep;58(2):291-7.
    PMID: 11551553
    Two halogenated C15 acetogenins, named lembyne-A and lembyne-B, have been isolated from an unrecorded Laurencia species collected off the Malaysian waters. Their structures were deduced on the basis of spectroscopic evidence. Previously known elatol and iso-obtusol showed potent antibacterial activity against some marine bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification*; Anti-Bacterial Agents/metabolism; Anti-Bacterial Agents/chemistry
  6. Citation: National Antimicrobial Guideline, Third Edition. Petaling Jaya: Ministry of Health, Malaysia; 2019

    Older version:
    National Antibiotic Guideline, Second Edition. Petaling Jaya: Ministry of Health, Malaysia; 2014. https://www.pharmacy.gov.my/v2/sites/default/files/document-upload/national-antibiotic-guideline-2014-full-versionjun2015_1.pdf
    National Antibiotic Guideline. Petaling Jaya: Ministry of Health, Malaysia; 2008
    Matched MeSH terms: Anti-Bacterial Agents
  7. Velmurugan S, Zhi-Xiang L, C-K Yang T, Juan JC
    Chemosphere, 2021 May;271:129788.
    PMID: 33556631 DOI: 10.1016/j.chemosphere.2021.129788
    Tetracycline (TC), a popularly found drug pollutant, can be contaminated in food and aquatic regions and causes a severe impact on human health. In this research, a visible light active p-stannic oxide/n-copper manganate (p-SnO2/n-CuMnO2) heterojunction was synthesized and has been applied for a signal on photoelectrochemical sensing of antibiotic TC. Firstly, the n-SnO2 microrods were synthesized via a simple and efficient homogeneous precipitation method and the p-CuMnO2 nanoparticles were synthesized by a facile ultrasound-assisted hydrothermal method. The SnO2/CuMnO2 microrods p-n heterojunction was prepared through a simple impregnation method and physicochemical properties of the microrods are characterized by using X-ray diffraction (XRD), Raman, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), UV-Vis diffuse reflectance spectroscopy (UVDRS), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Mott-Schottky analyses. The photoelectrochemical sensing performance of SnO2/CuMnO2 microrods was 2.7 times higher than that of as-synthesized pure SnO2 microrods is due to the more visible light absorption ability and p-n heterojunction (synergy). The designed SnO2/CuMnO2/ITO sensor gives photocurrent signals for the detection of TC in the range of 0.01-1000 μM with the detection limit (LOD) of 5.6 nM. The practical applicability of the sensor was monitored in cow milk and the Taipei River water sample.
    Matched MeSH terms: Anti-Bacterial Agents
  8. Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Irshad S, et al.
    Sci Total Environ, 2021 Jun 10;772:145389.
    PMID: 33578171 DOI: 10.1016/j.scitotenv.2021.145389
    Wide spread documentation of antibiotic pollution is becoming a threat to aquatic environment. Erythromycin (ERY), a macrolide belonging antibiotic is at the top of this list with its concentrations ranging between ng/L to a few μg/L in various global waterbodies giving rise to ERY-resistance genes (ERY-RGs) and ERY- resistance bacteria (ERY-RBs) posing serious threat to the aquatic organisms. ERY seems resistant to various conventional water treatments, remained intact and even increased in terms of mass loads after treatment. Enhanced oxidation potential, wide pH range, elevated selectivity, adaptability and greater efficiency makes advance oxidation processes (AOPs) top priority for degrading pollutants with aromatic rings and unsaturated bonds like ERY. In this manuscript, recent developments in AOPs for ERY degradation are reported along with the factors that affect the degradation mechanism. ERY, marked as a risk prioritized macrolide antibiotic by 2015 released European Union watch list, most probably due to its protein inhibition capability considered third most widely used antibiotic. The current review provides a complete ERY overview including the environmental entry sources, concentration in global waters, ERY status in STPs, as well as factors affecting their functionality. Along with that this study presents complete outlook regarding ERY-RGs and provides an in depth detail regarding ERY's potential threats to aquatic biota. This study helps in figuring out the best possible strategy to tackle antibiotic pollution keeping ERY as a model antibiotic because of extreme toxicity records.
    Matched MeSH terms: Anti-Bacterial Agents
  9. Ooi MH, Ngu SJ, Chor YK, Li J, Landersdorfer CB, Nation RL
    Clin Infect Dis, 2019 11 13;69(11):1962-1968.
    PMID: 30722017 DOI: 10.1093/cid/ciz067
    BACKGROUND: Intravenous colistin is widely used to treat infections in pediatric patients. Unfortunately, there is a paucity of pharmacological information to guide the selection of dosage regimens. The daily dose recommended by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) is the same body weight-based dose traditionally used in adults. The aim was to increase our understanding of the patient factors that influence the plasma concentration of colistin, and assess the likely appropriateness of the FDA and EMA dosage recommendations.

    METHODS: There were 5 patients, with a median age of 1.75 (range 0.1-6.25) years, a median weight of 10.7 (2.9-21.5) kg, and a median creatinine clearance of 179 (44-384) mL/min/1.73m2, who received intravenous infusions of colistimethate each 8 hours. The median daily dose was 0.21 (0.20-0.21) million international units/kg, equivalent to 6.8 (6.5-6.9) mg of colistin base activity per kg/day. Plasma concentrations of colistimethate and formed colistin were subjected to population pharmacokinetic modeling to explore the patient factors influencing the concentration of colistin.

    RESULTS: The median, average, steady-state plasma concentration of colistin (Css,avg) was 0.88 mg/L; individual values ranged widely (0.41-3.50 mg/L), even though all patients received the same body weight-based daily dose. Although the daily doses were ~33% above the upper limit of the FDA- and EMA-recommended dose range, only 2 patients achieved Css,avg ≥2mg/L; the remaining 3 patients had Css,avg <1mg/L. The pharmacokinetic covariate analysis revealed that clearances of colistimethate and colistin were related to creatinine clearance.

    CONCLUSIONS: The FDA and EMA dosage recommendations may be suboptimal for many pediatric patients. Renal functioning is an important determinant of dosing in these patients.

    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage; Anti-Bacterial Agents/blood; Anti-Bacterial Agents/pharmacokinetics*
  10. Gan HM, Parthasarathy A, Henry KR, Savka MA, Thomas BN, Hudson AO
    Microbiol Resour Announc, 2020 Feb 27;9(9).
    PMID: 32107300 DOI: 10.1128/MRA.01468-19
    In this study, we report the isolation, identification, characterization, and whole-genome sequence of the endophyte Pantoea sp. strain RIT388, isolated from Distemonanthus benthamianus, a plant known for its antifungal and antibacterial properties that is commonly used for chewing sticks.
    Matched MeSH terms: Anti-Bacterial Agents
  11. Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS
    Bioorg Med Chem Lett, 2013 Mar 1;23(5):1383-6.
    PMID: 23352268 DOI: 10.1016/j.bmcl.2012.12.069
    A series of fourteen dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions and were screened for their antimycobacterial activity against Mycobacterium tuberculosis H(37)Rv in HTS (High Throughput Screen). Most of the compounds showed moderate to good activity with MIC of less than 20 μM. Compound 4'-(4-bromophenyl)-1'-methyldispiro[acenaphthylene-1,2'-pyrrolidine-3',2″-indane]-2,1″(1H)-dione (4c) was found to be the most active with MIC of 12.50 μM.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*; Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  12. Ponnuchamy S, Kanchithalaivan S, Ranjith Kumar R, Ali MA, Choon TS
    Bioorg Med Chem Lett, 2014 Feb 15;24(4):1089-93.
    PMID: 24472146 DOI: 10.1016/j.bmcl.2014.01.007
    A series of novel hybrid heterocycles comprising arylidene thiazolidine-2,4-dione and 1-cyclopropyl-2-(2-fluorophenyl)ethanone were synthesized. These compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv in High Throughput Screen. Most of the hybrid arylidene thiazolidine-2,4-diones displayed moderate to good activity with MIC of less than 50 μM. Compound 1m exhibited maximum potency being 5.87 fold more active at EC50 and 6.26 fold more active at EC90 than the standard drug pyrimethamine.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  13. AlMatar M, Albarri O, Makky EA, Var I, Köksal F
    Mini Rev Med Chem, 2020;20(18):1908-1916.
    PMID: 32811410 DOI: 10.2174/1389557520666200818211405
    The need for new therapeutics and drug delivery systems has become necessary owing to the public health concern associated with the emergence of multidrug-resistant microorganisms. Among the newly discovered therapeutic agents is cefiderocol, which was discovered by Shionogi Company, Japan as an injectable siderophore cephalosporin. Just like the other β-lactam antibiotics, cefiderocol exhibits antibacterial activity via cell wall synthesis inhibition, especially in Gram negative bacteria (GNB); it binds to the penicillin-binding proteins, but its unique attribute is that it crosses the periplasmic space of bacteria owing to its siderophore-like attribute; it also resists the activity of β-lactamases. Among all the synthesized compounds with the modified C-7 side chain, cefiderocol (3) presented the best and well-balanced activity against multi-drug resistant (MDR) Gram negative bacteria, including those that are resistant to carbapenem. İn this article, an overview of the recent studies on cefiderocol was presented.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  14. Mohamed Ikhtifar Rafi, Cheah, Yoke Kqueen
    MyJurnal
    Bacterial endophytes are found on all types of plants and is a potential source of bioactive compounds which can be utilized to fight against multi-resistant pathogens and could be further develop into new leads for antibiotic development. However, the research done on the bacterial endophytes is relatively new and has potential to grow as it is theorized that each plant has one or more bacterial endophytes inhabiting them. This review aims to review the studies that have been done previously and give new insights on the latest trends in this field of research.
    Matched MeSH terms: Anti-Bacterial Agents
  15. Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, et al.
    PMID: 33987107 DOI: 10.3389/fcimb.2021.660048
    Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
    Matched MeSH terms: Anti-Bacterial Agents
  16. Abdullah S, Jang SE, Kwak MK, Chong K
    J Microbiol, 2020 Dec;58(12):1054-1064.
    PMID: 33263896 DOI: 10.1007/s12275-020-0208-z
    Antiplasmodial nortriterpenes with 3,4-seco-27-norlanostane skeletons, almost entirely obtained from fruiting bodies, represent the main evidential source for bioactive secondary metabolites derived from a relatively unexplored phytopathogenic fungus, Ganoderma boninense. Currently lacking is convincing evidence for antimicrobial secondary metabolites in this pathogen, excluding that obtained from commonly observed phytochemicals in the plants. Herein, we aimed to demonstrate an efficient analytical approach for the production of antibacterial secondary metabolites using the mycelial extract of G. boninense. Three experimental cultures were prepared from fruiting bodies (GBFB), mycelium cultured on potato dextrose agar (PDA) media (GBMA), and liquid broth (GBMB). Through solvent extraction, culture type-dependent phytochemical distributions were diversely exhibited. Water-extracted GBMB produced the highest yield (31.21 ± 0.61%, p < 0.05), but both GBFB and GBMA elicited remarkably higher yields than GBMB when polar-organic solvent extraction was employed. Greater quantities of phytochemicals were also obtained from GBFB and GBMA, in sharp contrast to those gleaned from GBMB. However, the highest antibacterial activity was observed in chloroform-extracted GBMA against all tested bacteria. From liquid-liquid extractions (LLE), it was seen that mycelia extraction with combined chloroform-methanol-water at a ratio of 1:1:1 was superior at detecting antibacterial activities with the most significant quantities of antibacterial compounds. The data demonstrate a novel means of assessing antibacterial compounds with mycelia by LLE which avoids the shortcomings of standardized methodologies. Additionally, the antibacterial extract from the mycelia demonstrate that previously unknown bioactive secondary metabolites of the less studied subsets of Ganoderma may serve as active and potent antimicrobial compounds.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  17. Mohd Nazrin Mohd Isa, Nor Azura Ahmad Tarmidzi, Norzalina Ghazali, Nalisha Mohamed Ramli, Ammar Yaseer Abdul Hakim@Abdul Khakin
    MyJurnal
    Antibiotic prophylaxis guidelines for infective endocarditis have been regularly
    revised and modified based on current scientific evidence. These guidelines commonly regarded as
    standard of care and determine the medicolegal standards. The aim of this study was to elicit the
    current practice of prophylaxis antibiotic for Infective endocarditis among general dental
    practitioner in Klang Valley. (Copied from article).
    Matched MeSH terms: Anti-Bacterial Agents
  18. Lee SW, Loo CH, Tan WC
    Med J Malaysia, 2018 10;73(5):338-339.
    PMID: 30350820 MyJurnal
    Confluent and reticulated papillomatosis (CRP) was first described in 1927 by Gougerot and further characterised by Carteud.1 It is relatively rare, and the exact pathophysiology was not well known. Over the years, multiple treatment modalities were proposed. We report our experience with three cases of CRP which showed complete clearance with tetracycline group of antibiotics.
    Matched MeSH terms: Anti-Bacterial Agents
  19. Dougall D, Abraham EP
    Nature, 1955;176:256.
    DOI: 10.1038/176256a0
    WHILE studying the antibacterial products of a species of Streptomyces (N.C.I.B. 8697) sent by Dr. R. Green from Malaya, we have isolated an orange-red coloured basic substance which is very active against a variety of bacteria and is highly toxic to mice. The antibiotic was extracted from the culture fluid into chloroform, at pH 6, and re-extracted into water at pH 2, or extracted into trichloroethylene, at pH 8.5, and re-extracted into water at pH 3.5. It was purified by counter-current distribution in a solvent system consisting of trichloroethylene and 0.1 M sodium citrate buffer, pH. 5.95. In this system its partition coefficient, K (Combining double low line concentration in trichloroethylene/concentration in water), was 0.98. The purified product yielded a crystalline hydrochloride, reineckate and picrate. The behaviour of this antibiotic suggests that it is identical with, or very closely related to, xanthomycin A - a substance which has been isolated from species of Streptomyces1, and stated to have quinonoid properties2. We wish to record, however, that it is a stronger base than xanthomycin A has been reported to be and that it yields two simple bases on hydrolysis which have not been described as degradation products of xanthomycin A. © 1955 Nature Publishing Group.
    Matched MeSH terms: Anti-Bacterial Agents
  20. Azman AS, Mawang CI, Khairat JE, AbuBakar S
    Int Microbiol, 2019 Dec;22(4):403-409.
    PMID: 30847714 DOI: 10.1007/s10123-019-00066-4
    A biofilm is a community of microorganisms attached to a surface and embedded in a matrix of extracellular polymeric substances. Biofilms confer resistance towards conventional antibiotic treatments; thus, there is an urgent need for newer and more effective antimicrobial agents that can act against these biofilms. Due to this situation, various studies have been done to investigate the anti-biofilm effects of natural products including bioactive compounds extracted from microorganisms such as Actinobacteria. This review provides an insight into the anti-biofilm potential of Actinobacteria against various pathogenic bacteria, which hopefully provides useful information, guidance, and improvements for future antimicrobial studies. Nevertheless, further research on the anti-biofilm mechanisms and compound modifications to produce more potent anti-biofilm effects are required.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links