Displaying publications 141 - 160 of 250 in total

Abstract:
Sort:
  1. Shuid AN, Chuan LH, Mohamed N, Jaarin K, Fong YS, Soelaiman IN
    Asia Pac J Clin Nutr, 2007;16(3):393-402.
    PMID: 17704019
    Palm oil is shown to have antioxidant, anticancer and cholesterol lowering effects. It is resistant to oxidation when heated compared to other frying oils such as soy oil. When a frying oil is heated repeatedly, it forms toxic degradation products, such as aldehydes which when consumed, may be absorbed into the systemic circulation. We have studied the effects of taking soy or palm oil that were mixed with rat chow on the bone histomorphometric parameters of ovariectomised rats. Female Sprague-Dawley rats were divided into eight groups: (1) normal control group; (2) ovariectomised-control group; (3) ovariectomised and fresh soy oil; (4) ovariectomised and soy oil heated once; (5) ovariectomised and soy oil heated five times; (6) ovariectomised and fresh palm oil; (7) ovariectomised and palm oil heated once; (8) ovariectomised and palm oil heated five times. These oils were mixed with rat chow at weight ratio of 15:100 and were given to the rats daily for six months. Ovariectomy had caused negative effects on the bone histomorphometric parameters. Ingestion of both fresh and once-heated oils, were able to offer protections against the negative effects of ovariectomy, but these protections were lost when the oils were heated five times. Soy oil that was heated five times actually worsens the histomorphometric parameters of ovariectomised rats. Therefore, it may be better for postmenopausal who are at risk of osteoporosis to use palm oil as frying oil especially if they practice recycling of frying oils.
    Matched MeSH terms: Bone and Bones/drug effects; Bone and Bones/metabolism
  2. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2018;19(5):439-450.
    PMID: 26343111 DOI: 10.2174/1389450116666150907100838
    BACKGROUND: Vitamin C, traditionally associated with scurvy, is an important nutrient for maintaining bone health. It is essential in the production of collagen in bone matrix. It also scavenges free radicals detrimental to bone health.

    OBJECTIVE: This review aims to assess the current evidence of the bone-sparing effects of vitamin C derived from cell, animal and human studies.

    RESULTS: Cell studies showed that vitamin C was able to induce osteoblast and osteoclast formation. However, high-dose vitamin C might increase oxidative stress and subsequently lead to cell death. Vitamin C-deficient animals showed impaired bone health due to increased osteoclast formation and decreased bone formation. Vitamin C supplementation was able to prevent bone loss in several animal models of bone loss. Human studies generally showed a positive relationship between vitamin C and bone health, indicated by bone mineral density, fracture probability and bone turnover markers. Some studies suggested that the relationship between vitamin C and bone health could be U-shaped, more prominent in certain subgroups and different between dietary and supplemental form. However, most of the studies were observational, thus could not confirm causality. One clinical trial was performed, but it was not a randomized controlled trial, thus confounding factors could not be excluded.

    CONCLUSION: vitamin C may exert beneficial effects on bone, but more rigorous studies and clinical trials should be performed to validate this claim.

    Matched MeSH terms: Bone and Bones/drug effects; Bone and Bones/metabolism*
  3. Norazlina M, Ima-Nirwana S, Abul Gapor MT, Abdul Kadir Khalid B
    Asia Pac J Clin Nutr, 2002;11(3):194-9.
    PMID: 12230232
    In this study the effects of vitamin E deficiency and supplementation on bone calcification were determined using 4-month-old female Sprague-Dawley rats. The rats weighed between 180 and 200 g. The study was divided in three parts. In experiment I the rats were given normal rat chow (RC, control group), a vitamin E deficient (VED) diet or a 50% vitamin E deficient (50%VED) diet. In experiment 2 the rats were given VED supplemented with 30 mg/kg palm vitamin E (PVE30), 60 mg/kg palm vitamin E (PVE60) or 30 mg/kg pure alpha-tocopherol (ATF). In experiment 3 the rats were fed RC and given the same supplements as in experiment 2. The treatment lasted 8 months. Vitamin E derived from palm oil contained a mixture of ATF and tocotrienols. Rats on the VED and 50%VED diets had lower bone calcium content in the left femur compared to the RC group (91.6 +/- 13.3 mg and 118.3 +/- 26.0 mg cf 165.7 +/- 15.2 mg; P < 0.05) and L5 vertebra (28.3 +/- 4.0 mg and 39.5 +/- 6.2 mg compared with 51.4 +/- 5.8 mg; P < 0.05). Supplementing the VED group with PVE60 improved bone calcification in the left femur (133.6 +/- 5.0 mg compared with 91.6 +/- 13.3 mg; P < 0.05) and L5 vertebra (41.3 +/- 3.3 mg compared with 28.3 +/- 4.0 mg; P < 0.05) while supplementation with PVE30 improved bone calcium content in the L5 vertebra (35.6 +/- 3.1 mg compared with 28.3 +/- 4.0 mg; P < 0.05). However, supplementation with ATF did not change the lumbar and femoral bone calcium content compared to the VED group. Supplementing the RC group with PVE30, PVE60 or ATF did not cause any significant changes in bone calcium content. In conclusion, vitamin E deficiency impaired bone calcification. Supplementation with the higher dose of palm vitamin E improved bone calcium content, but supplementation with pure ATF alone did not. This effect may be attributed to the tocotrienol content of palm vitamin E. Therefore, tocotrienols play an important role in bone calcification.
    Matched MeSH terms: Bone and Bones/metabolism; Bone and Bones/physiology*
  4. Jiang H, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2019;14:8149-8159.
    PMID: 31632024 DOI: 10.2147/IJN.S214646
    Introduction: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength.

    Materials and methods: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites.

    Results: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE.

    Conclusion: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.

    Matched MeSH terms: Bone and Bones/drug effects; Bone and Bones/physiology*
  5. Wong SK, Mohamad NV, Jayusman PA, Shuid AN, Ima-Nirwana S, Chin KY
    Aging Male, 2019 Jun;22(2):89-101.
    PMID: 29508640 DOI: 10.1080/13685538.2018.1448058
    Selective estrogen receptor modulators (SERMs) represent a class of drugs that act as agonist or antagonist for estrogen receptor in a tissue-specific manner. The SERMs drugs are initially used for the prevention and treatment of osteoporosis in postmenopausal women. Bone health in prostate cancer patients has become a significant concern, whereby patients undergo androgen deprivation therapy is often associated with deleterious effects on bone. Previous preclinical and epidemiological findings showed that estrogens play a dominant role in improving bone health as compared to testosterone in men. Therefore, this evidence-based review aims to assess the available evidence derived from animal and human studies on the effects of SERMs on the male skeletal system. The effects of SERMs on bone mineral density (BMD)/content (BMC), bone histomorphometry, bone turnover, bone strength and fracture risk have been summarized in this review.
    Matched MeSH terms: Bone and Bones/drug effects*; Bone and Bones/pathology
  6. Ahmad R, Ishlah W, Shaharudin MH, Sathananthar KS, Norie A
    Med J Malaysia, 2008 Jun;63(2):162-3.
    PMID: 18942310 MyJurnal
    Accidental swallowing of fish bone, which arrested in esophagus, is fairly common. However the incidence of esophageal perforation due to fish bone swallowing is low. Delayed posterior mediastinal abscess as a result of the esophageal perforation is a rare manifestation and may lead to fatal outcome. Two cases of delayed formation of posterior mediastinal abscess following esophageal perforation due to accidental fish bone ingestion are described here. In these cases patients presented with interscapular back pain. In one of the cases the patient died because of the presentation was misdiagnosed hence leading to delay in the intervention. Radiological findings and surgical management namely esophagoscopy and neck exploration are briefly described.
    Matched MeSH terms: Bone and Bones
  7. Ramli ES, Suhaimi F, Asri SF, Ahmad F, Soelaiman IN
    J. Bone Miner. Metab., 2013 May;31(3):262-73.
    PMID: 23274351 DOI: 10.1007/s00774-012-0413-x
    Rapid onset of bone loss is a frequent complication of systemic glucocorticoid therapy which may lead to fragility fractures. Glucocorticoid action in bone depends upon the activity of 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1). Regulations of 11β-HSD1 activity may protect the bone against bone loss due to excess glucocorticoids. Glycyrrhizic acid (GCA) is a potent inhibitor of 11β-HSD. Treatment with GCA led to significant reduction in bone resorption markers. In this study we determined the effect of GCA on 11β-HSD1 activity in bones of glucocorticoid-induced osteoporotic rats. Thirty-six male Sprague-Dawley rats (aged 3 months and weighing 250-300 g) were divided randomly into groups of ten. (1) G1, sham operated group; (2) G2, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral vehicle normal saline vehicle; and (3) G3, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral GCA 120 mg/kg/day The results showed that GCA reduced plasma corticosterone concentration. GCA also reduced serum concentration of the bone resorption marker, pyridinoline and induced 11β-HSD1 dehydrogenase activity in the bone. GCA improved bone structure, which contributed to stronger bone. Therefore, GCA has the potential to be used as an agent to protect the bone against glucocorticoid induced osteoporosis.
    Matched MeSH terms: Bone and Bones/drug effects; Bone and Bones/enzymology; Bone and Bones/pathology
  8. Ambu VK, Narayanan P, Ratnasingam V
    J Laryngol Otol, 2001 Sep;115(9):740-2.
    PMID: 11564306
    Laryngeal foreign bodies, especially in children, mostly present as an acute emergency. Few cases of long-standing laryngeal foreign bodies have been reported in the literature. This case illustrates one of the sequelae of a neglected laryngeal foreign body, resulting in significant granulation tissue formation in the larynx, and its management.
    Matched MeSH terms: Bone and Bones
  9. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS
    Malays Orthop J, 2018 Nov;12(3):6-13.
    PMID: 30555640 DOI: 10.5704/MOJ.1811.002
    Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals' vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body's compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material's compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
    Matched MeSH terms: Bone and Bones
  10. Le MHT, Noor Hayaty AK, Zaini ZM, Dom SM, Ibrahim N, Radzi ZB
    Korean J Orthod, 2019 Jul;49(4):235-245.
    PMID: 31367578 DOI: 10.4041/kjod.2019.49.4.235
    Objective: This study examined bone microstructure restoration after rapid maxillary expansion (RME) with and without corticotomy over multiple retention periods.

    Methods: Eighteen male Dorper sheep were randomly distributed into three groups (n = 6 each group): group 1, RME with corticotomy on the buccal and palatal sides; group 2, conventional RME treatment; and group 3, no treatment. Post-RME, trabecular bone microstructure and new bone formation were evaluated by using microcomputed tomography (microCT) and histomorphometry after a 4- or 12-week retention period. Intergroup differences in bone quality and bone remodeling were analyzed by using two-way analysis of variance with Bonferroni post-hoc test.

    Results: The bone volume fraction (bone volume [BV]/total volume [TV]) values relative to the control in groups 1 and 2 were 54.40% to 69.88% after the 4-week retention period and returned to approximately 80% after the 12-week retention period. The pooled BV/TV values of the banded teeth in groups 1 and 2 were significantly lower than those of the control after the 4-week retention period (p < 0.05). However, after the 12-week retention period, the pooled BV/TV values in group 2 were significantly lower than those in groups 1 and 3 (p < 0.05). Histomorphological analysis showed that the new bone formation area in group 1 was approximately two to three times of those in group 2 and control.

    Conclusions: Corticotomy significantly enhanced the restoration of bone quality after the retention periods for banded teeth. This benefit might result from the increased new bone formation after corticotomy.

    Matched MeSH terms: Bone and Bones
  11. Rozila I, Azari P, Munirah S, Safwani WKZW, Pingguan-Murphy B, Chua KH
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671175 DOI: 10.3390/polym13040597
    (1) Background: Stem cells in combination with scaffolds and bioactive molecules have made significant contributions to the regeneration of damaged bone tissues. A co-culture system can be effective in enhancing the proliferation rate and osteogenic differentiation of the stem cells. Hence, the aim of this study was to investigate the osteogenic differentiation of human adipose derived stem cells when co-cultured with human osteoblasts and seeded on polycaprolactone (PCL):hydroxyapatite (HA) scaffold; (2) Methods: Human adipose-derived stem cells (ASC) and human osteoblasts (HOB) were seeded in three different ratios of 1:2, 1:2 and 2:1 in the PCL-HA scaffolds. The osteogenic differentiation ability was evaluated based on cell morphology, proliferation rate, alkaline phosphatase (ALP) activity, calcium deposition and osteogenic genes expression levels using quantitative RT-PCR; (3) Results: The co-cultured of ASC/HOB in ratio 2:1 seeded on the PCL-HA scaffolds showed the most positive osteogenic differentiation as compared to other groups, which resulted in higher ALP activity, calcium deposition and osteogenic genes expression, particularly Runx, ALP and BSP. These genes indicate that the co-cultured ASC/HOB seeded on PCL-HA was at the early stage of osteogenic development; (4) Conclusions: The combination of co-culture system (ASC/HOB) and PCL-HA scaffolds promote osteogenic differentiation and early bone formation.
    Matched MeSH terms: Bone and Bones
  12. Tan TH, Lee BN
    World J Nucl Med, 2014 Sep;13(3):190-2.
    PMID: 25538491 DOI: 10.4103/1450-1147.144820
    We described a case of 51-year-old female patient presented with a right calf necrotising fasciitis (NF) where osteomyelitis (OM) was suspected. (99m)Tc-hydroxymethane diphosphonate three-phase bone scintigraphy and (99m)Tc-besilosomab scan failed to demonstrate classical features of OM. The final diagnosis was only made by isolating Acinetobacter sp. in both intra-operative bone and tissue cultures from below-knee amputation. As conclusions, the detection of lower limb OM by (99m)Tc-besilosomab scan is not easy when there is concurrence overlying NF. The unusual three-phase bone scan finding of pericortical accumulation of tracer as an early sign of OM is highlighted in this case.
    Matched MeSH terms: Bone and Bones
  13. Che Nor Zarida Che Seman, Zamzuri Zakaria
    MyJurnal
    Critical size defects (CSD) in the long bones of New Zealand White rabbits (Oryctolagus cuniculus) have been used for years as an experimental model for investigation of the effectiveness of a new bone substitute material. There are varieties of protocols available in the literature. This technical note attempts to present an alternative surgical technique of a CSD in the New Zealand white rabbit tibia. Methods: Thirty-nine New Zealand White rabbits were used in this study. A CSD of approximately 4.5 mm (width) X 9.0 mm (length) was surgically drilled at the proximal tibial metaphysis, approximately 1 cm from the knee joint. The surrounding of soft tissue was repositioned and sutured layer by layer with bioabsorbable surgical suture. Two x-rays of anteroposterior and lateral were taken before assessed under computed tomography scan at 6, 12 and 24 weeks. Results: This alternative method created CSD with less bleeding from the muscle observed. No mortality or other surgical complications observed within 6 weeks, 12 weeks and 24 weeks following surgery. Conclusion: A simple and safe method for performing CSD was demonstrated and recommended as an alternative approach for surgery on New Zealand White rabbits.
    Matched MeSH terms: Bone and Bones
  14. Mohamed Abdelrasoul, Jahangir Bin Kamaldin, Jer Ping Ooi, Ahmed Abd El-Fattah, Gihan Kotry, Omneya Ramadan, et al.
    MyJurnal
    Introduction: Melatonin (MEL) loaded alginate-chitosan/beta-tricalcium phosphate (Alg-CH/β-TCP) composite hy- drogel has been formulated as a scaffold for bone regeneration. MEL in the scaffold was anticipated to accelerate bone regeneration. The objective of this study is to observe signs of systemic toxicity and physical changes on surface defected bone for bone regenerative performance of the composite. Methods: The proximal-medial metaphyseal cortex of the left tibia of New Zealand white rabbit was the surgical site of the defect. A total of nine rabbits were randomly allocated to three groups; Group I; implanted with MEL loaded Alg-CH/β-TCP, Group II; Alg-CH/β-TCP and Group III defects were sham control. The rabbits were daily observed to determine systemic toxicity effects by composites. The physical changes to implanted site were observed using digital x-ray radiography and computerized tomography at weeks 0, 2, 4, 6 and 8 of post-implantation. Results: There were no clinical signs of systemic toxicity for all groups of rabbits. Digital radiography did not show adverse effects to the bone. Computerized tomography showed reduction in the area size and depth volume of the implantation site, but accelerated regeneration within the 8 weeks was not significantly different (P
    Matched MeSH terms: Bone and Bones
  15. Sri Asliza, M.A., Zaheruddin, K., Shahrizal, H.
    MyJurnal
    In this study, natural Hydroxyapatite (HA) was extracted from clean cow bone by treatment with NaOH and heating at high temperature before ground into fine powder. The HA powder were than mixed together with binder for several hours. Dense HA were formed in die steel mould by using uniaxially pressing method. Sample was sintered at different temperature 1150, 1200, 1250 and 1300°C for several hours. The phases of specimen were identified using X-ray diffraction (XRD). The mechanical properties were analyzed using three-point bending testing and the microstructure was observed by scanning electron microscopy. From XRD results, natural HA shows phase of pure HA up to 1250 o C and fracture strength results indicated that the mechanical properties of specimen increase as temperature increase. From microstructure observation using SEM, HA specimen shows initial stages of sintering process at temperature 1150°C and show changes in microstructure evolution as temperature increase up to 1300°C.
    Matched MeSH terms: Bone and Bones
  16. Shalan NA, Mustapha NM, Mohamed S
    Nutrition, 2017 Jan;33:42-51.
    PMID: 27908549 DOI: 10.1016/j.nut.2016.08.006
    OBJECTIVE: Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats.

    METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).

    RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.

    CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.

    Matched MeSH terms: Bone and Bones/drug effects*; Bone and Bones/metabolism; Bone and Bones/pathology
  17. Norazmi, K., Khairul, A.J.
    MyJurnal
    Primary hyperparathyroidism with severe bone disease as a result of excessive parathyroid hormone ( PTH ) release and severe hypercalcaemia can lead to 'hungry bone syndrome' (HBS) post operatively. This is due to sudden cessation of PTH and drop in serum calcium. We reported a case a young man with primary hyperparathyriodism due to a single parathyroid adenoma with severe bone disease and post operatively developed hungry bone syndrome.
    Matched MeSH terms: Bone and Bones
  18. Zamzuri, Z., Mohd Adham, S.Y., Saufi, M.A., Azian, A.A., Fadhli, M.
    MyJurnal
    Ewing's sarcoma is a rare tumor first discovered by James Ewing in 1921. It is more common in bone or skeletal component compared to soft tissue or extraosseous Ewing's sarcoma. Among soft tissue Ewing’s, spinal cord involvement is rarer with only nine cases reported. We report a case of nine-year-old Malay girl who presented with low back pain for two months following a fall with progressive neurological deficits of bilateral lower limb. Magnetic resonance imaging was suggestive of a well-defined margin of intradural extramedullary tumor. With nerve sheath tumor in mind, surgical excision with laminectomy L2-S1 was performed. Intraoperative finding was an extradural mass from L3-L5 with extension to bilateral neuroforamen. Histopathology report defined a round cell tumour of Ewing’s sarcoma from the mass.
    Matched MeSH terms: Bone and Bones
  19. Lai P, Nagammai T, Vethakkan S
    Malays Fam Physician, 2013;8(2):47-52.
    PMID: 25606283 MyJurnal
    Bisphosphonates are pyrophosphate analogues, with a strong affinity for bones. They inhibit bone resorption and are currently the first choice of treatment for osteoporosis. Bisphosphonates should be taken in a specific manner and for at least one year to be effective in the maintenance and improvement of bone mineral density (BMD), as well as for protection against fractures. We report a case of a postmenospausal osteoporotic woman who lost BMD despite being on bisphosphonate therapy for eight years, highlighting issues that a primary care doctor needs to address before deciding on the next best option.
    Matched MeSH terms: Bone and Bones
  20. Nazrun, A.S., Khairunnur, A., Norliza, M., Norazlina, M., Iman Nirwana, S.
    Medicine & Health, 2008;3(2):247-255.
    MyJurnal
    Oxidative stress has been associated with postmenopausal osteoporosis which pre-disposes to risk of fracture. Palm tocotrienol is a potent antioxidant and has the poten-tial to be used for treatment of post-menopausal osteoporosis. The aim of the study is to determine if palm tocotrienol supplementation could alleviate oxidative stress in ovariectomised rat model and improve its bone strength. The rats were di- vided into four groups: (i) sham-operated  group (SHAM) (ii) ovariectomised-control group (OVX) (iii) ovariectomised and given 60mg/kg α-tocopherol by oral gavage (OVX + ATF) (iv) ovariectomised and given 60mg/kg palm tocotrienols by oral gavage (OVX + PTT). After eight weeks of treatment, blood samples were taken to measure oxida-tive status (MDA, SOD and GPX) while the femurs were biomechanically tested for strength and resistance to fracture. Ovariectomy was shown to induce oxidative stress as shown by the raised MDA levels and reduced GPX activity. Palm tocotrienols seemed to offer protection against the ovariectomy-induced oxidative stress as shown by the suppression of MDA levels and raised GPX and SOD activities in the OVX+PTT group. In comparison, α-tocopherol was only able to raise the SOD but not as high as palm tocotrienols. The biomechanical tests have shown that ovariectomy has not af-fected the bone strength significantly after eight weeks. Palm tocotrienols supplemen-tation for eight weeks was effective in preventing oxidative stress in a post-meno-pausal rat.
    Matched MeSH terms: Bone and Bones
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links