Displaying publications 141 - 160 of 3311 in total

Abstract:
Sort:
  1. Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, et al.
    PLoS One, 2019;14(3):e0214212.
    PMID: 30917166 DOI: 10.1371/journal.pone.0214212
    It has been demonstrated that nanocrystalline forsterite powder synthesised using urea as a fuel in sol-gel combustion method had produced a pure forsterite (FU) and possessed superior bioactive characteristics such as bone apatite formation and antibacterial properties. In the present study, 3D-scaffold was fabricated using nanocrystalline forsterite powder in polymer sponge method. The FU scaffold was used in investigating the physicochemical, biomechanics, cell attachment, in vitro biocompatibility and osteogenic differentiation properties. For physicochemical characterisation, Fourier-transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoemission spectrometer (XPS) and Brunauer-Emmett-Teller (BET) were used. FTIR, EDX, XRD peaks and Raman spectroscopy demonstrated correlating to FU. The XPS confirmed the surface chemistry associating to FU. The BET revealed FU scaffold surface area of 12.67 m2/g and total pore size of 0.03 cm3/g. Compressive strength of the FU scaffold was found to be 27.18 ± 13.4 MPa. The human bone marrow derived mesenchymal stromal cells (hBMSCs) characterisation prior to perform seeding on FU scaffold verified the stromal cell phenotypic and lineage commitments. SEM, confocal images and presto blue viability assay suggested good cell attachment and proliferation of hBMSCs on FU scaffold and comparable to a commercial bone substitutes (cBS). Osteogenic proteins and gene expression from day 7 onward indicated FU scaffold had a significant osteogenic potential (p<0.05), when compared with day 1 as well as between FU and cBS. These findings suggest that FU scaffold has a greater potential for use in orthopaedic and/or orthodontic applications.
    Matched MeSH terms: Bone Marrow Cells/cytology; Bone Marrow Cells/metabolism*; Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*
  2. Yap MS, Tang YQ, Yeo Y, Lim WL, Lim LW, Tan KO, et al.
    Virol J, 2016 Jan 06;13:5.
    PMID: 26738773 DOI: 10.1186/s12985-015-0454-6
    The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials.
    Matched MeSH terms: Human Embryonic Stem Cells/cytology*; Cells, Cultured; Neural Stem Cells/cytology*; Neural Stem Cells/drug effects; Neural Stem Cells/metabolism; Neural Stem Cells/virology*
  3. Mok PL, Leong CF, Cheong SK
    Malays J Pathol, 2013 Jun;35(1):17-32.
    PMID: 23817392 MyJurnal
    Mesenchymal stem cells (MSC) are multipotent, self-renewing cells that can be found mainly in the bone marrow, and other post-natal organs and tissues. The ease of isolation and expansion, together with the immunomodulatory properties and their capability to migrate to sites of inflammation and tumours make them a suitable candidate for therapeutic use in the clinical settings. We review here the cellular mechanisms underlying the emerging applications of MSC in various fields.
    Matched MeSH terms: Mesenchymal Stromal Cells/physiology*
  4. Srijaya TC, Pradeep PJ, Zain RB, Musa S, Abu Kasim NH, Govindasamy V
    Stem Cells Int, 2012;2012:423868.
    PMID: 22654919 DOI: 10.1155/2012/423868
    Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC lines in vitro from patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.
    Matched MeSH terms: Pluripotent Stem Cells; Induced Pluripotent Stem Cells
  5. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
    Matched MeSH terms: Stem Cells/cytology*; Stem Cells/drug effects*; Stem Cells/metabolism; Embryonic Stem Cells/cytology; Embryonic Stem Cells/drug effects; Embryonic Stem Cells/metabolism
  6. Tan YF, Leong CF, Cheong SK
    Malays J Pathol, 2010 Dec;32(2):97-102.
    PMID: 21329180 MyJurnal
    Dendritic cells (DCs) are professional antigen presenting cells of the immune system. They can be generated in vitro from peripheral blood monocytes supplemented with GM-CSF, IL-4 and TNF alpha. During induction, DCs will increase in size and acquire multiple cytoplasmic projections when compared to their precursor cells such as monocytes or haematopoietic stem cells which are usually round or spherical. Morphology of DCs can be visualized by conventional light microscopy after staining or phase-contrast inverted microscopy or confocal laser scanning microscopy. In this report, we described the morphological appearances of DCs captured using the above-mentioned techniques. We found that confocal laser scanning microscopy yielded DCs images with greater details but the operating cost for such a technique is high. On the other hand, the images obtained through light microscopy after appropriate staining or phase contrast microscopy were acceptable for identification purpose. Besides, these equipments are readily available in most laboratories and the cost of operation is affordable. Nevertheless, morphological identification is just one of the methods to characterise DCs. Other methods such as phenotypic expression markers and mixed leukocyte reactions are additional tools used in the characterisation of DCs.
    Matched MeSH terms: Dendritic Cells/cytology*
  7. Totey S, Totey S, Pal R, Pal R
    J Stem Cells, 2009;4(2):105-21.
    PMID: 20232596
    There has been unprecedented interest in stem cell research mainly because of their true potential and hope that they offer to the patients as a cell therapy with the prospect to treat hitherto incurable diseases. Despite the worldwide interest and efforts that have been put in this research, major fundamental issues are still unresolved. Adult stem cells such as hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) are already under clinical applications and there are several examples of plasticity and self-renewal where adult stem cells or their precursor cells can be re-programmed by extra cellular cues or internal cues to alter their character in a way that could have important application for cell therapy and regenerative medicine. From a clinical perspective, no other area of stem cell biology has been applied as successfully as has transplantation of bone marrow stem cells and cord blood stem cells for the treatment of hematological diseases. In the last few years, research in stem cell biology has expanded staggeringly, engendering new perspectives concerning the identity, origin, and full therapeutic potential of tissue-specific stem cells. This review will focus on the use of adult stem cells, its biology in the context of cell plasticity and their therapeutic potential for repair of different tissues and organs.
    Matched MeSH terms: Hematopoietic Stem Cells/physiology; Adult Stem Cells/immunology; Adult Stem Cells/physiology*; Adult Stem Cells/transplantation; Mesenchymal Stromal Cells/physiology
  8. Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, et al.
    World J Stem Cells, 2020 Sep 26;12(9):938-951.
    PMID: 33033556 DOI: 10.4252/wjsc.v12.i9.938
    In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
    Matched MeSH terms: Stem Cells; Stromal Cells
  9. Sharma A, Ahuja S, Diwaker P, Wadhwa N, Arora VK
    Malays J Pathol, 2019 Aug;41(2):191-194.
    PMID: 31427555
    INTRODUCTION: Acinic cell carcinoma (ACC) represents 1-6% of parotid gland neoplasms.

    CASE REPORT: We report cytomorphological features of two uncommon variants of acinic cell carcinoma. The first case was an eleven-year-old female with a nodular mass in parotid and the FNA smears demonstrated a lymphoepithelial lesion composed of epithelial tumour cells with features of acinar cells in a lymphoid background. The second case was a 62-year-old male with a large parotid mass. The FNA smears revealed presence of extracellular, acellular amyloid-like material with tumour cells arranged in follicles.

    DISCUSSION: Awareness of cytomorphological features of these unusual variants of acinic cell carcinoma may help to avoid diagnostic pitfall.

    Matched MeSH terms: Epithelial Cells; Acinar Cells
  10. Emparan Q, Harun R, Sing Jye Y
    Int J Phytoremediation, 2021;23(5):454-461.
    PMID: 32976718 DOI: 10.1080/15226514.2020.1825327
    Palm oil mill effluent (POME) has high chemical oxygen demand (COD), thus requires effective treatments to environmentally benign levels before discharge. In this study, immobilized microalgae cells are used for removing pollutants in treated palm oil mill effluent (TPOME). Different ratios of microalgae beads to TPOME concentration were examined at 1:2.5, 1:5, and 1:10. The biomass concentration and COD removal were measured through a standard method. The color of the cultivated microalgae beads changed from light green to darker green after the POME treatment for 9 days, hence demonstrating that microalgae cells were successfully grown inside the beads with pH up to 9.84. The immobilized cells cultivated in the POME at 1:10 achieved a higher biomass concentration of 1.268 g/L and a COD removal percentage of 72% than other treatment ratios. The increment of the ratio of microalgae cells beads to POME concentration did not cause any improvement in COD removal efficiency. This was due to the inhibitory effect of self-shading resulting in the slow growth rate of microalgae cells which responsible for low COD removal. Therefore, this system could be a viable technology for simultaneous biomass production and POME treatment. This will contribute to research efforts toward the development of new and improved technologies in treating POME.
    Matched MeSH terms: Cells, Immobilized/chemistry
  11. Wong CY, Cheong SK, Mok PL, Leong CF
    Pathology, 2008 Jan;40(1):52-7.
    PMID: 18038316
    AIMS: Adult human bone marrow contains a population of mesenchymal stem cells (MSC) that contributes to the regeneration of tissues such as bone, cartilage, muscle, tendon, and fat. In recent years, it has been shown that functional stem cells exist in the adult bone marrow, and they can contribute to renal remodelling or reconstitution of injured renal glomeruli, especially mesangial cells. The purpose of this study is to examine the ability of MSC isolated from human bone marrow to differentiate into mesangial cells in glomerular injured athymic mice.

    METHODS: MSC were isolated from human bone marrow mononuclear cells based on plastic adherent properties and expanded in vitro in the culture medium. Human mesenchymal stem cells (hMSC) were characterised using microscopy, immunophenotyping, and their ability to differentiate into adipocytes, chondrocytes, and osteocytes. hMSC were then injected into athymic mice, which had induced glomerulonephropathy (GN).

    RESULTS: Test mice (induced GN and infused hMSC) were shown to have anti-human CD105(+) cells present in the kidneys and were also positive to anti-human desmin, a marker for mesangial cells. Furthermore, immunofluorescence assays also demonstrated that anti-human desmin(+) cells in the glomeruli of these test mice were in the proliferation stage, being positive to anti-human Ki-67.

    CONCLUSIONS: These findings indicate that hMSC found in renal glomeruli differentiated into mesangial cells in vivo after glomerular injury occurred.

    Matched MeSH terms: Bone Marrow Cells/pathology; Cells, Cultured; Mesangial Cells/metabolism; Mesangial Cells/pathology*; Mesenchymal Stromal Cells/pathology*
  12. Sung TC, Li HF, Higuchi A, Kumar SS, Ling QD, Wu YW, et al.
    Biomaterials, 2020 02;230:119638.
    PMID: 31810728 DOI: 10.1016/j.biomaterials.2019.119638
    Human induced pluripotent stem cells (hiPSCs) were generated on several biomaterials from human amniotic fluid in completely xeno-free and feeder-free conditions via the transfection of pluripotent genes using a nonintegrating RNA Sendai virus vector. The effect of xeno-free culture medium on the efficiency of the establishment of human amniotic fluid stem cells from amniotic fluid was evaluated. Subsequently, the effect of cell culture biomaterials on the reprogramming efficiency was investigated during the reprogramming of human amniotic fluid stem cells into hiPSCs. Cells cultured in laminin-511, laminin-521, and Synthemax II-coated dishes and hydrogels having optimal elasticity that were engrafted with specific oligopeptides derived from vitronectin could be reprogrammed into hiPSCs with high efficiency. The reprogrammed cells expressed pluripotency proteins and had the capability to differentiate into cells derived from all three germ layers in vitro and in vivo. Human iPSCs could be generated successfully and at high efficiency (0.15-0.25%) in completely xeno-free conditions from the selection of optimal cell culture biomaterials.
    Matched MeSH terms: Induced Pluripotent Stem Cells*
  13. Sundagumaran H, Seethapathy J
    Int J Pediatr Otorhinolaryngol, 2020 Nov;138:110393.
    PMID: 33152983 DOI: 10.1016/j.ijporl.2020.110393
    BACKGROUND: Distortion product otoacoustic emissions (DPOAE) in infants with Iron Deficiency Anemia (IDA) helps in understanding the cochlear status especially the functioning of outer hair cells.

    OBJECTIVES: To analyze the presence of DPOAE across frequencies and DP amplitude in infants with and without IDA.

    METHOD: DPOAE were recorded on 40 infants with IDA and 40 infants without IDA in the age range of 6-24 months. Cubic DPOAEs (2f1-f2) were measured at six f2 frequencies (1500 Hz, 2000 Hz, 3000 Hz, 4500 Hz, 6000 Hz & 8000 Hz) with primary tone stimulus of intensity L1 equal to 65 dBSPL and L2 equal to 55 dBSPL. Immittance audiometry was performed using 226 Hz probe tone prior to DPOAE recording to ascertain normal middle ear functioning.

    RESULTS: DPOAEs were present in all infants with and without IDA across frequencies tested. DP amplitude across the frequencies did not show any statistically significant difference (p 

    Matched MeSH terms: Hair Cells, Auditory, Outer*
  14. Hazirah, A.R., Abdah, M.A., Zainal, B.
    Malays J Nutr, 2013;19(2):223-232.
    MyJurnal
    Introduction: Cancer chemopreventive agents from natural sources have been actively investigated over the years to seek prevention against cancer. In this study, cocoa polyphenols extract (CPE) was examined to explore its antioxidant and cytotoxicity activities. Methods: CPE was analysed for total phenolic content (TPC) and antioxidant activity (DPPH radical scavenging activity and FRAP ferric-reducing antioxidant power assays). In vitro cytotoxicity effect of CPE
    against HepG2, HT-29, HeLa, MCF-7, MDA-MB-231 and WRL-68 cell lines after 48 h exposure was measured by MTT assay. Results: The study showed that CPE had higher total phenolic content (13560.0±420.1 mg GAE/100g dry weight of sample) than vitamin E (p
    Matched MeSH terms: HT29 Cells; MCF-7 Cells
  15. Mohd Ramli SS, Husain S, Wong YP
    BMJ Case Rep, 2021 Jun 22;14(6).
    PMID: 34158320 DOI: 10.1136/bcr-2020-236436
    A 39-year-old man presented with bilateral nasal obstruction for 4 months and associated with hyposmia and foul-smelling nasal discharge. Nasal endoscopy showed irregular mucosa of the nasal cavity with easily bleeding. Nasal biopsy reported as extranodal Natural Killer/T cell lymphoma, nasal type. In-situ hybridisation for Epstein-Barr encoding region was positive. He was treated with six cycles of gemcitabine, oxaliplatin and L-asparaginase and peripheral blood stem cell transplant. After the treatment, he was asymptomatic until 9 months where he had splenic abscess and undergone splenectomy. He was asymptomatic of the disease for 2 years.
    Matched MeSH terms: Natural Killer T-Cells*
  16. Nakkarach A, Foo HL, Song AA, Mutalib NEA, Nitisinprasert S, Withayagiat U
    Microb Cell Fact, 2021 Feb 05;20(1):36.
    PMID: 33546705 DOI: 10.1186/s12934-020-01477-z
    BACKGROUND: Extracellular metabolites of short chain fatty acids (SCFA) excreted by gut microbiota have been reported to play an important role in the regulation of intestinal homeostasis. Apart from supplying energy, SCFA also elicit immune stimulation in animal and human cells. Therefore, an attempt was conducted to isolate SCFA producing bacteria from healthy human microbiota. The anti-cancer and anti-inflammatory effects of extracellular metabolites and individual SFCA were further investigated by using breast, colon cancer and macrophage cells. Toxin, inflammatory and anti-inflammatory cytokine gene expressions were investigated by RT-qPCR analyses in this study.

    RESULTS: Escherichia coli KUB-36 was selected in this study since it has the capability to produce seven SCFA extracellularly. It produced acetic acid as the main SCFA. It is a non-exotoxin producer and hence, it is a safe gut microbiota. The IC50 values indicated that the E. coli KUB-36 metabolites treatment elicited more potent cytotoxicity effect on MCF7 breast cancer cell as compared to colon cancer and leukemia cancer cells but exhibited little cytotoxic effects on normal breast cell. Furthermore, E. coli KUB-36 metabolites and individual SCFA could affect inflammatory responses in lipopolysaccharide-induced THP-1 macrophage cells since they suppressed inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α well as compared to the control, whilst inducing anti-inflammatory cytokine IL-10 expression.

    CONCLUSION: SCFA producing E. coli KUB-36 possessed vast potential as a beneficial gut microbe since it is a non-exotoxin producer that exhibited beneficial cytotoxic effects on cancer cells and elicited anti-inflammatory activity simultaneously. However, the probiotic characteristic of E. coli KUB-36 should be further elucidated using in vivo animal models.

    Matched MeSH terms: HT29 Cells; MCF-7 Cells
  17. Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR
    Biotechnol Appl Biochem, 2021 Aug;68(4):902-917.
    PMID: 32856730 DOI: 10.1002/bab.2013
    Ganoderma neo-japonicum is a well-known medicinal mushroom in Asian countries. However, scientific validations on its curative activities are confined to cirrhosis and diabetes. In this study, the anticancer properties of G. neo-japonicum were evaluated using cellular and computational models. The ethanolic extract (EtOH) with a promising inhibitory effect was fractionated into four different fractions: hexane (Hex), chloroform (Chl), butanol (Btn), and aqueous (Aq). The active fractions were then subjected to cell apoptosis assessment and phytochemical profiling. Molecular docking was conducted to elucidate the affinity of selected constituents towards antiapoptotic Bcl-2 protein. The butanol fraction showed the highest antioxidant activities as well as total phenolic content. Both hexane and chloroform fractions exerted a potent cytotoxic effect on colonic carcinoma cells through the induction of apoptosis. Phytochemical analysis revealed that the chloroform fraction is terpenoid enriched whereas the hexane fraction comprises predominantly sterol constituents. Stellasterol and 1,25-dihydroxyvitamin D3 3-glycoside were demonstrated to have a high affinity towards Bcl-2 protein. Overall, G. neo-japonicum can be considered as a compelling therapeutic candidate for cancer treatment.
    Matched MeSH terms: HT29 Cells; HCT116 Cells
  18. M.N.M. Nawi, A.A. Manaf, M.R. Arshad
    ASM Science Journal, 2013;7(2):144-151.
    MyJurnal
    This article uses finite volume and finite element methods for optimization of the artificial hair cell sensor. The performance of the sensor was investigated for different materials such as sicon and polysilicon and by varying hair cell dimensions including width and length. The silicon material which has low young modulus was proposed based on the simulation performance. The performance of the hair cell sensor was achieved by increasing the hair cell length while increasing the width did not significantly influence the performance. The
    performance of the sensor was studied for its viscous force, deflection, von mises stress and sensitivity. From the simulation, the hair cell with a length of 1600 µm and 80 µm width was suggested for the subsequent analysis. Another way to improve the performance was by modifying the hair cell geometry and it was proved that the modified hair cell was more sensitive, based on the deflection. The angle of flow that hit the hair cell also affected the deflection of the sensor where the zero angle flow which was parallel to the substrate was the most effective angle. The limitations of the performance of hair cell for various fluid velocity were also discussed in this paper.
    Matched MeSH terms: Hair Cells, Auditory; Artificial Cells
  19. Sabariah, M.N., Leong, C.F., Cheong, S.K.
    MyJurnal
    Peripheral blood (PB) CD34+ cells enumeration is currently the most reliable method to guide the timing of stem cell harvest. However, its usage is restricted by being technically challenging, costly, and time-consuming. Immature reticulocyte fraction (IRF) determination, which is simpler and cheaper and has a faster turn-around time, has been proposed for a similar purpose. The purpose of this study is to evaluate the value of IRF in guiding stem cell harvest and examine the correlation between IRF and PB CD34+ cells count. Daily pre-harvest tests, i.e. PB CD34+ cells and IRF from 21 patients scheduled for autologous PBSC transplant were assessed. Stem cells harvests were commenced when the PB CD34+ cell count were more than 10 cell/ul. A total of 205 pre-harvest tests were analysed. Following stem cell mobilisations, both the IRF and PB CD 34+ cell counts rose with a variable pattern. In this study, we observed that the IRF peaks preceded the PB CD34+ count by 2 days. On the day of stem cell harvest, all the peak IRF values were >0.3. The PB CD34+ cell counts correlated with the harvested stem cell yield, whereby r2 = 0.77, p < 0.021. In autologous stem cell mobilisation, we believe that IRF is a useful screening tool to predict the rise of the PB CD34+ cell counts as it is a simple, fast and less costly. An IRF of > 0.3 may be used as a cut-off value for the initiation of PB CD34+ quantification prior to stem cell harvest.
    Matched MeSH terms: Blood Cells; Stem Cells
  20. Nur Sazwi Nordin, Lokman Mohammad Isa, Syed Zahir Idid, Widya Lestari, Basma Ezzat Mustafa, Solachuddin Jauhari Arief Ikhwan, et al.
    MyJurnal
    Flaxseeds offer a wide range of pharmacological properties including antioxidant,
    antibacterial and anticancer. However its effect on mesenchymal stem cells has not been
    elucidated. Thus, this study aimed to determine the effects of flaxseed crude extract on stem cell
    from human exfoliated deciduous teeth (SHED) in terms of cell viability, morphology and
    proliferation activity. (Copied from article).
    Matched MeSH terms: Stem Cells; Mesenchymal Stromal Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links