Displaying publications 141 - 160 of 213 in total

Abstract:
Sort:
  1. Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, et al.
    J Pharm Bioallied Sci, 2020 12 21;13(1):116-122.
    PMID: 34084057 DOI: 10.4103/jpbs.JPBS_279_19
    Objectives: The aim of the present study was to isolate and evaluate cytotoxicity and anti-inflammatory activities of new novel compounds isolated from Prismatomeris glabra.

    Materials and Methods: Dried root of P. glabra was extracted under reflux with methyl alcohol, fractionated through the vacuum liquid chromatography technique, and evaporated and then purified the compounds using column chromatography and preparative thin-layer chromatography. THP-1 cells were treated with amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol with various concentrations (0-30 µg/mL) and then incubated with MTS reagent for 2h. Treatment was done for 24, 48, and 72h. Then, effects of these compounds were also tested on PGE2, TNF-α, and IL-6 expression in human THP-1-derived macrophage cells for 24h.

    Results: Three new compounds such as amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol were isolated. After 24h of incubation, a significant decrease in cell viability was reported with IC50 values of amentoflavone, 5,7,4'- hydroxyflavonoid, and stigmasterol (21 µg/mL ≡ 38 M), (18 µg/mL ≡ 66 M) and (20 µg/mL ≡ 48.5 M), respectively. Whereas for 48 and 72h treatment showed a less decreased cell viability compared with 24h treatment. These compounds also showed a significant reduction in the production of TNF-α, IL-6, and PGE2 in a dose-dependent manner.

    Conclusions: The isolated new compounds showed significant cytotoxicity and anti-inflammatory effects.

    Matched MeSH terms: Interleukin-6
  2. Zakaria NN, Malahubban M, Fakurazi S, And WSC, Rajaee AH
    Trop Life Sci Res, 2021 Mar;32(1):145-162.
    PMID: 33936556 DOI: 10.21315/tlsr2021.32.1.9
    Mud lobsters are crustaceans from the genus Thalassina which are lesser known and seldom seen but are nevertheless an important organism to the mangrove ecosystem. In Malaysia and Thailand, mud lobsters are eaten by locals as treatment for asthma. It is traditionally believed that they are effective in reducing the number of asthma attacks and severity of asthma symptoms. However, the therapeutic potential of mud lobster extract remains unclear and has not been fully elucidated or reported in any scientific study. The objectives of this study are to investigate the anti-inflammatory potential of mud lobster, Thalassina anomala extracts (hexane, chloroform and methanol) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and to identify the potential bioactive compounds involved. An MTT assay was performed to determine the cytotoxicity of the T. anomala extracts on RAW 264.7 macrophages. Nitrite quantification assay and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the ability of the T. anomala extracts to suppress the secretion and expression of nitric oxide (NO), Prostaglandin E2 (PGE2) and proinflammatory cytokines (TNF-α, IL-6 and IL-1β) in LPS-stimulated macrophages. GC-MS analysis was done to identify putative metabolites. The hexane extract of T. anomala showed anti-inflammatory activity by significantly inhibiting the LPS-induced production of NO, PGE2, interleukin- (IL-) 6, IL-1β and tumour necrosis factor-alpha (TNF-α) in a concentration-dependent manner. Hexane extract treatment with 100 μg/mL has decreased the NO secretion into 37 μM. Meanwhile, hexane extract at concentration of 100 μg/mL able to significantly suppressed PGE2,TNF-α, IL-6 and IL-1β production into 2015 pg/mL, 2406 pg/mL, 460 pg/mL and 9.6 pg/mL, respectively. GC-MS analysis of the hexane extract revealed the presence of 19 putative compounds. The identified compounds were reported to have anti-inflammatory, antioxidant and antibacterial activities. These results suggest that the hexane extract of T. anomala potentially has anti-inflammatory properties and concentration dependently suppressed NO, PGE2 and proinflammatory cytokines' production in LPS-stimulated macrophages. The findings provide a rational basis of the traditional use of mud lobster for inflammation-associated ailments.
    Matched MeSH terms: Interleukin-6
  3. Nunez PRM, Honorio-França AC, Geiger SM, Guedes M, Fagundes DLG, Magalhães AM, et al.
    Trop Biomed, 2020 Sep 01;37(3):763-777.
    PMID: 33612789 DOI: 10.47665/tb.37.3.763
    The aim of this study was to evaluate the prevalence of enteroparasitic infections in students and their hormonal and immunological repercussions on physical development. Students of basic education of both sexes were evaluated. Parasitological stool tests were performed using the Hoffman and Kato-Katz methods. The students were divided into two groups: a control group (negative parasitological examination, N=25) and an infected group (positive parasitological test, N=25). Anthropometric variables (height, weight, and BMI), concentrations of hormones (melatonin and cortisol), cytokine/chemokine levels (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17 and TNF-α) and physical performance (aerobic capacity, upper- and lower-limb muscle strength and abdominal performance) were evaluated. The prevalence of parasitic infection among the students was 7.98%. No anthropometric differences were observed among the groups. IL-2 and TNF-α levels were higher and IL-8 levels were lower in serum from students who were positive for parasitic infection. Serum from students who were positive for parasitic infection showed higher levels of melatonin than that from parasitenegative students. No differences were observed in cortisol levels. Students who were positive for parasitic infection presented greater lower-limb strength and lower abdominal performance than parasite-negative students. In the parasitic infection group, IL-12 was positively correlated with melatonin. In the parasitic infection group, IL-8 showed a positive correlation with aerobic capacity, while IL-17 and TNF-α showed a positive correlation with abdominal performance. These data suggest that parasitic infections determine the profile of inflammatory cytokines and that melatonin may be involved in the control of this process to minimize tissue damage. Additionally, students' difficulty in practising physical exercises can be an indication of enteroparasitic infection.
    Matched MeSH terms: Interleukin-6
  4. Karthivashan G, Kura AU, Arulselvan P, Md Isa N, Fakurazi S
    PeerJ, 2016;4:e2127.
    PMID: 27441110 DOI: 10.7717/peerj.2127
    N-Acetyl-p-Aminophenol (APAP), also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO) is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p) and after an hour, these groups were administered with saline (10 mL/kg), silymarin-positive control (100 mg/kg of bw, i.p), MO leaf extract (100 mg/kg of bw, i.p), and MO leaf extract (200 mg/kg bw, i.p) respectively. Group 1 was administered saline (10 mL/kg) during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and decreased anti-inflammatory (IL-10) cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract treatment. Therefore, MO leaf extract has demonstrated some therapeutic effectiveness against APAP-induced nephrotoxicity through enhancement of the endogenous antioxidant system and a modulatory effect on specific inflammatory cytokines in kidney tissues.
    Matched MeSH terms: Interleukin-6
  5. Mohd Iskandar BJ, William T, Daisy Vanitha J
    Med J Malaysia, 2018 04;73(2):106-109.
    PMID: 29703874 MyJurnal
    BACKGROUND: Leptospirosis is a zoonotic disease with symptoms ranging from a mild, febrile illness to a severe form with multiorgan failure. Severe leptospirosis may require medical interventions in the form of dialysis and/or mechanical ventilation and often leads to mortality. An exaggerated host immune response-in particular, a "cytokine storm"-that causes endothelial and organ damage is associated with the disease severity and mortality.

    METHODS: Microscopic agglutination test (MAT)-positive and MAT-negative human serum samples (n=30) from patients with leptospirosis were obtained from the Public Health Laboratory, Kota Kinabalu, Sabah, Malaysia and control serum samples (n=10) were obtained from healthy student volunteers. We estimated the levels of IL-1β, IL-6, IL-8, IL-10, and TNF-α in serum samples by a Luminex assay.

    RESULTS: The levels of IL-6, IL-8, and IL1-β were significantly higher in 13% of the patients with leptospirosis compared to the healthy controls, while the levels of IL-10 and TNF-α were not elevated in either group.

    CONCLUSION: Our data suggest that elevated levels of IL-6, IL- 8, and IL1-β may be associated with leptospirosis disease severity, which requires patient follow-up for confirmation.

    Matched MeSH terms: Interleukin-6
  6. Botelho D, Leo BF, Massa C, Sarkar S, Tetley T, Chung KF, et al.
    Front Pharmacol, 2018;9:213.
    PMID: 29632485 DOI: 10.3389/fphar.2018.00213
    Here we examine the organ level toxicology of both carbon black (CB) and silver nanoparticles (AgNP). We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF). C57Bl6/J male mice were intratracheally instilled with saline (control), low (0.05 μg/g) or high (0.5 μg/g) doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D) content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.
    Matched MeSH terms: Interleukin-6
  7. Santhanam RK, Fakurazi S, Ahmad S, Abas F, Ismail IS, Rukayadi Y, et al.
    Phytother Res, 2018 Aug;32(8):1608-1616.
    PMID: 29672974 DOI: 10.1002/ptr.6092
    The antiphoto aging property of Zanthoxylum rhetsa obtained from Pangkor Island, Malaysia, was evaluated. Solvent fractions of different polarity obtained from the methanolic extract of the bark material were initially tested for anticollagenase and antielastase activities. The ethyl acetate fraction showed bioactivity against the protease enzymes. Hence, it was subjected to further purification via column chromatography, to yield a major constituent, hesperidin. Subsequently, the ethyl acetate fraction and hesperidin were tested for their effects against UVB-induced cytotoxicity and expressions of inflammatory cytokines (IL-6, IL-1β, and TNF-α), NF-κB, and MMPs (MMP1, 3, and 9) in human dermal fibroblasts (HDF). Both fraction and pure compound prevented UVB-induced cytotoxicity in HDF cells, in a dose dependent manner. Moreover, the ethyl acetate fraction inhibited the increase of pro-inflammatory cytokines induced by UVB to a level similar to the control (without UV treatment). Additionally, the fraction significantly inhibited the expressions of NF-κB, MMP 1, MMP 3, and MMP 9 in HDF cells treated with UVB. Similar effects were observed with hesperidin. The results obtained suggested that the ethyl acetate fraction of Z. rhetsa and its bioactive constituent, hesperidin, have the potential to be used as active ingredients in sunscreen and antiphoto aging formulations.
    Matched MeSH terms: Interleukin-6
  8. Siti Hajar MH, Zulkefli S, Juwita S, Norhayati MN, Siti Suhaila MY, Rasool AHG, et al.
    PeerJ, 2018;6:e5758.
    PMID: 30356972 DOI: 10.7717/peerj.5758
    Background: Secondhand smoke (SHS) exposure has adverse effects on the cardiovascular system. This study aimed to determine the effects of SHS on the cardiovascular disease biomarkers, namely the metabolic, inflammatory, and oxidative stress markers in healthy adult women.

    Methods: This comparative cross-sectional study was conducted among healthy women. The cases included those women exposed to SHS, and the controls included those women not exposed to SHS. SHS exposure was defined as being exposed to SHS for at least 15 min for 2 days per week. Venous blood was taken to measure the metabolic markers (high molecular weight adiponectin, insulin level, insulin resistance, and nonesterified fatty acids), oxidative stress markers (oxidized low density lipoprotein cholesterol and 8-isoprostane), and inflammatory markers (high-sensitivity C-reactive protein and interleukin-6). A hair nicotine analysis was also performed. An analysis of covariance and a simple linear regression analysis were conducted.

    Results: There were 101 women in the SHS exposure group and 91 women in the non-SHS exposure group. The mean (with standard deviation) of the hair nicotine levels was significantly higher in the SHS exposure group when compared to the non-SHS exposure group [0.22 (0.62) vs. 0.04 (0.11) ng/mg; P = 0.009]. No significant differences were observed in the high molecular weight adiponectin, insulin and insulin resistance, nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, interleukin-6, and high-sensitivity C-reactive protein between the two groups. The serum high molecular weight adiponectin was negatively associated with the insulin level and insulin resistance in the women exposed to SHS. However, no significant relationships were seen between the high molecular weight adiponectin and nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, high-sensitivity C-reactive protein in the SHS group.

    Discussion: There were no significant differences in the metabolic, oxidative stress, and inflammatory markers between the SHS exposure and non-SHS exposure healthy women. A low serum level of high molecular weight adiponectin was associated with an increased insulin level and resistance in the women exposed to SHS.

    Matched MeSH terms: Interleukin-6
  9. Jafri MA, Kalamegam G, Abbas M, Al-Kaff M, Ahmed F, Bakhashab S, et al.
    Front Cell Dev Biol, 2019;7:380.
    PMID: 32010693 DOI: 10.3389/fcell.2019.00380
    Osteoarthritis (OA) is a chronic degenerative joint disorder associated with degradation and decreased production of the extracellular matrix, eventually leading to cartilage destruction. Limited chondrocyte turnover, structural damage, and prevailing inflammatory milieu prevent efficient cartilage repair and restoration of joint function. In the present study, we evaluated the role of secreted cytokines, chemokines, and growth factors present in the culture supernatant obtained from an ex vivo osteochondral model of cartilage differentiation using cartilage pellets (CP), bone marrow stem cells (BM-MSCs), and/or BM-MSCs + CP. Multiplex cytokine analysis showed differential secretion of growth factors (G-CSF, GM-CSF, HGF, EGF, VEGF); chemokines (MCP-1, MIP1α, MIP1β, RANTES, Eotaxin, IP-10), pro-inflammatory cytokines (IL-1β, IL-2, IL-5, IL-6, IL-8, TNFα, IL-12, IL-15, IL-17) and anti-inflammatory cytokines (IL-4, IL-10, and IL-13) in the experimental groups compared to the control. In silico analyses of the role of stem cells and CP in relation to the expression of various molecules, canonical pathways and hierarchical cluster patterns were deduced using the Ingenuity Pathway Analysis (IPA) software (Qiagen, United States). The interactions of the cytokines, chemokines, and growth factors that are involved in the cartilage differentiation showed that stem cells, when used together with CP, bring about a favorable cell signaling that supports cartilage differentiation and additionally helps to attenuate inflammatory cytokines and further downstream disease-associated pro-inflammatory pathways. Hence, the autologous or allogeneic stem cells and local cartilage tissues may be used for efficient cartilage differentiation and the management of OA.
    Matched MeSH terms: Interleukin-6
  10. Mohd Ariff A, Abu Bakar NA, Abd Muid S, Omar E, Ismail NH, Ali AM, et al.
    BMC Complement Med Ther, 2020 Feb 17;20(1):56.
    PMID: 32066426 DOI: 10.1186/s12906-020-2844-6
    BACKGROUND: Ficus deltoidea (FD) has been shown to have antidiabetic, anti-inflammatory, antinociceptive and antioxidant properties. However, its effects on key events in the pathogenesis of atherosclerosis are unknown.

    AIM: To investigate the endothelial activation, inflammation, monocyte-endothelial cell binding and oxidative stress effects of four FD varieties.

    METHODS: Human coronary artery endothelial cells (HCAEC) were incubated with different concentrations of aqueous ethanolic extracts of FD var. trengganuensis (FDT), var. kunstleri (FDK), var. deltoidea (FDD) and var. intermedia (FDI), together with LPS. Protein and gene expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), endothelial-leukocyte adhesion molecule-1 (E-selectin), interleukin-6 (IL-6), Nuclear factor-κB (NF-κB) p50 and p65 and endothelial nitric oxide synthase (eNOS) were measured using ELISA and QuantiGene plex, respectively. Adhesion of monocyte to HCAEC and formation of reactive oxygen species (ROS) were detected by Rose Bengal staining and 2'-7'-dichlorofluorescein diacetate (DCFH-DA) assay.

    RESULTS: FDK exhibited the highest inhibition of biomarkers in relation to endothelial activation and inflammation, second in reducing monocyte binding (17.3%) compared to other varieties. FDK (25.6%) was also the most potent at decreasing ROS production.

    CONCLUSION: FD has anti-atherogenic effects, possibly mediated by NF-κB and eNOS pathways; with FDK being the most potent variety. It is potentially beneficial in mitigating atherogenesis.

    Matched MeSH terms: Interleukin-6
  11. Khan HA, Alamery S, Ibrahim KE, El-Nagar DM, Al-Harbi N, Rusop M, et al.
    Saudi J Biol Sci, 2019 Mar;26(3):625-631.
    PMID: 30899181 DOI: 10.1016/j.sjbs.2018.09.012
    Gold nanoparticles (GNPs) are among the ideal nano-sized materials for medical applications such as imaging and drug delivery. Considering the significance of recent reports on acute phase induction of inflammatory mediators by GNPs, we studied the effect of GNPs on proinflammatory cytokines gene expression in mouse brain. Group 1 served as control whereas groups 2-4 were given only one intraperitoneal dose of 5, 20 and 50 nm GNPs, respectively and sacrificed after 24 h. The animals in groups 5-7 also received the same treatment but sacrificed after 7 days. Groups 8-10 received two injections of GNPs (5, 20 and 50 nm, respectively), first at the beginning of study and second on day 6, and sacrificed on day 7. Total RNA was extracted from the cerebral tissue and analyzed for the gene expressions of IL-1β, IL-6 and TNF-α. A single injection of 5 nm diameter GNPs significantly increased the mRNA expression of IL-1β and IL-6 in mouse brain on day 7, which was not augmented by the second dose of the same GNPs. Larger size GNPs (20 nm and 50 nm) did not cause any significant change in the expression of proinflammatory cytokines in mouse brain. In conclusion, systemic administration of small sized GNPs (5 nm) induced a proinflammatory cascade in mouse brain indicating a crucial role of GNPs size on immune response. It is important to use the right sized GNPs in order to avoid an acute phase inflammatory response that could be cytotoxic or interfere with the bioavailability of nanomaterials.
    Matched MeSH terms: Interleukin-6
  12. Kampan NC, Madondo MT, McNally OM, Stephens AN, Quinn MA, Plebanski M
    Front Immunol, 2017;8:1482.
    PMID: 29163543 DOI: 10.3389/fimmu.2017.01482
    Background: Epithelial ovarian cancer (EOC) remains a highly lethal gynecological malignancy. Ascites, an accumulation of peritoneal fluid present in one-third of patients at presentation, is linked to poor prognosis. High levels of regulatory T cells (Tregs) in ascites are correlated with tumor progression and reduced survival. Malignant ascites harbors high levels of Tregs expressing the tumor necrosis factor receptor 2 (TNFR2), as well as pro-inflammatory factors such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). IL-6 is also associated with poor prognosis. Herein, we study the effect of IL-6 and TNF present in ascites on the modulation of TNFR2 expression on T cells, and specifically Tregs.

    Methods: Ascites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control). In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2(+) Tregs and TNFR2(-) Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC.

    Results: High levels of immunosuppressive (sTNFR2, IL-10, and TGF-β) and pro-inflammatory cytokines (IL-6 and TNF) were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4(+)CD25(hi)FoxP3(+) Tregs, resulting in an increased TNFR2(+) Treg/effector T cell ratio. Furthermore, TNFR2(+) Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2(+) Treg frequency was inversely correlated with interferon-gamma (IFN-γ) production by effector T cells, and was uniquely able to suppress TNFR2(+) T effectors. Blockade of IL-6, but not TNF, within ascites decreased TNFR2(+) Treg frequency. Results indicating malignant ascites promotes TNFR2 expression, and increased suppressive Treg activity using PBMC were confirmed using purified Treg subsets.

    Conclusion: IL-6 present in malignant ovarian cancer ascites promotes increased TNFR2 expression and frequency of highly suppressive Tregs.

    Matched MeSH terms: Interleukin-6
  13. Rehman MU, Rashid SM, Rasool S, Shakeel S, Ahmad B, Ahmad SB, et al.
    Arch Physiol Biochem, 2019 Jul;125(3):201-209.
    PMID: 29537332 DOI: 10.1080/13813455.2018.1448422
    Development of diabetic nephropathy (DN) is directly linked to oxidative stress and inflammation. In this context, inflammatory and oxidative markers have gained much attention as targets for therapeutic intervention. We studied the effect of zingerone in a streptozotocin/high fat diet (STZ/HFD)-induced type 2 diabetic Wistar rat model. Zingerone also known as vanillyl acetone is a pharmacologically active compound present usually in dry ginger. STZ/HFD caused excessive increase in ROS and inflammation in experimental animals. The treatment with zingerone markedly abrogated ROS levels, inhibited the NF-кB activation and considerably reduced level of other downstream inflammatory molecules (TNF-α, IL-6, IL-1β), furthermore, zingerone treatment improved renal functioning by significantly decreasing the levels of kidney toxicity markers KIM-1, BUN, creatinine, and LDH and suppressed TGF-β. Collectively, these findings indicate that zingerone treatment improved renal function by anti-hyperglycaemic, anti-oxidant, and anti-inflammatory effects, suggesting the efficacy of zingerone in the treatment of DN.
    Matched MeSH terms: Interleukin-6
  14. Sarmadi B, Musazadeh V, Dehghan P, Karimi E
    Nutr Metab Cardiovasc Dis, 2023 Oct;33(10):1821-1835.
    PMID: 37500345 DOI: 10.1016/j.numecd.2023.03.010
    AIMS: Cinnamon is a polyphenol-rich spice that has beneficial effects on markers of cardio metabolic health such as lipid profile, oxidative stress, and inflammation. Despite the accumulating evidence from meta-analyses on the effects of cinnamon on these markers, their findings are controversial. Thus, this umbrella meta-analysis was performed to evaluate the present evidence and provide a conclusive clarification.

    DATA SYNTHESIS: We searched the following international databases from inception to January 2022: PubMed, Scopus, Web of Science and Embase, and Google Scholar. Our findings of eleven meta-analyses showed that cinnamon consumption can significantly improve total cholesterol (TC) (WMD = -1.01 mg/dL; 95% CI: -2.02, -0.00, p = 0.049), low-density lipoprotein-cholesterol (LDL-C) (WMD = -0.82 mg/dL; 95% CI: -1.57, -0.07, p = 0.032), and high-density lipoprotein-cholesterol (HDL-C) (WMD = 0.47 mg/dL; 95% CI: 0.17, 0.77, p = 0.002) levels but not triglyceride (TG) levels (WMD = -0.13 mg/dL; 95% CI: -0.58, 0.32, p = 0.570). Our results did not show any significant effect of cinnamon on malondialdehyde (MDA) levels (WMD = -0.47; 95% CI: -0.99, 0.05, p = 0.078) and C-reactive protein (CRP) levels (WMD = -1.33; 95% CI: -2.66, 0.00, p = 0.051) but there was enhanced total antioxidant capacity (TAC) in patients with type 2 diabetes (T2DM) and polycystic ovary syndrome (PCOS) (WMD = 0.34; 95% CI: 0.04, 0.64, p = 0.026) and increased levels of interleukin-6 (WMD = -1.48; 95% CI: -2.96, -0.01, p = 0.049).

    CONCLUSIONS: Our results support the usefulness of cinnamon intake in modulating an imbalanced lipid profile in some metabolic disorders, particularly PCOS, as well as in improving TAC and interleukin-6. The review protocol was registered on PROSPERO as CRD42022358827.

    Matched MeSH terms: Interleukin-6
  15. Munawaroh F, Arfian N, Saputri LAAWS, Kencana SMS, Sari DCR
    Med J Malaysia, 2023 Jul;78(4):476-483.
    PMID: 37518915
    INTRODUCTION: Diabetes Mellitus (DM) is a chronic disease with many complications, one of which is diabetic encephalopathy which is characterised by memory dysfunction. Hyperglycaemia that occurs in DM will activate inflammatory pathways in neurons, including NF-κB pathway. Activation of this pathway produce proinflammatory agents such as MCP-1 and IL-6, which activate glial cells. Activation of glial cells is characterised by Glial Fibrillary Acid Protein (GFAP). Chlorogenic acid (CGA) has been reported to have anti-inflammatory effects and can improve memory function. This research aimed to determine the effect of CGA as anti-inflammation, its effect on memory function, mRNA expression of NF-κB, MCP-1, IL- 6, and GFAP of frontal lobe.

    MATERIALS AND METHODS: A total of 24 male rats were randomly divided into six groups: control, DM 1.5 month (DM1.5), DM 2 months (DM2) and the group with three different doses of CGA 12.5 (CGA1), 25 (CGA2), and 50 (CGA3) mg/KgBW. Frontal lobe tissue is taken for analysis of mRNA expression for NF-κB, MCP-1, IL-6, and GFAP using Reverse Transcriptase PCR (RT-PCR). Samples were also taken for histopathology preparation and stained by immunohistochemistry method using anti-GFAP antibodies to observe glial cell activation in frontal lobe tissue.

    RESULTS: The group that was given CGA at all doses have statistically significant better memory function, i.e. DM2 versus CGA1 (p = 0.036), CGA2 (p = 0.040), and CGA3 (p = 0.021). The result of mRNA expression in NF-κB was lower in the group given CGA, i.e. DM2 compared to CGA2 (p = 0.007). mRNA expression of MCP-1 was significantly lower in all CGA treatment groups compared to the non-CGA group (p = 0.000). IL-6 mRNA expression was lower than the group not given CGA, DM compared to CGA2 (p = 0.028). GFAP mRNA expression was lower than the group given CGA in DM, DM2 group compared to CGA1 (p = 0.04) and CGA3 (p = 0.004).

    CONCLUSION: Administration of CGA can improve memory function at all doses given, and can reduce brain inflammatory activity, especially in the CGA2 group.

    Matched MeSH terms: Interleukin-6
  16. Jinying W, Keming L, Hanqing T, Xuqing Z, Muccee F, Xuan L, et al.
    Mol Biol Rep, 2023 Nov;50(11):9367-9378.
    PMID: 37819498 DOI: 10.1007/s11033-023-08858-8
    OBJECTIVE: To observe the effects of acupuncture and moxibustion therapy on pain relief in sciatica rats and to explore the mechanism of its anti-inflammatory effect.

    METHODS: SPF grade 4-6-week-old Kunming rats were randomly divided into 5 groups including a blank group, sham-operated group, model group, acupuncture, and moxibustion (AnM) group, and positive group. A total of 10 rats were included in each group. The model group, the AnM group, and the positive group were prepared by ligating the left sciatic nerve. AnM group was used for acupuncture and moxibustion therapy intervention, and the positive group was rendered to quick-acting sciatica pills once a day for 7 days (3 courses of treatment). The blank group, sham-operated group, and model group were not treated. The changes in thermal and mechanical pain thresholds were observed before and after the operation, and the morphological changes of the dorsal horn of the spinal cord in the lumbosacral region of the rats in each group were observed by HE staining after the courses of treatment finished. The contents of IL-1β, IL-6, IL-18, and TNF-α were measured by ELISA and the expressions of NOX1, NOX2, NOX4, and NLRP3 genes were detected by RT-qPCR while the protein expressions of NOX1, NOX2, NOX4 and NLRP3 were analyzed by Western blotting.

    RESULTS: The AnM and positive group showed a significant increase in thermal and mechanical pain thresholds after treatment, while there was no significant change in the model group. As compared to the control group, the contents of IL- 1β, IL-6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes were significantly increased in the model group (P 6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes significantly decreased in the AnM and positive groups (P 

    Matched MeSH terms: Interleukin-6
  17. Zhang B, Zhang R, Deng H, Cui P, Li C, Yang F, et al.
    PLoS One, 2023;18(12):e0294768.
    PMID: 38051740 DOI: 10.1371/journal.pone.0294768
    BACKGROUND AND AIM: Primarily, this study compares the efficacy of probiotic and acceptance and commitment therapy (ACT) in alleviating the severity of alcohol craving and alcohol use disorder (AUD) among patients who had undergo two weeks of in-patient detoxification. Secondarily, this study compares the efficacy of probiotic and ACT in mitigating the severity of comorbid depression and anxiety symptoms; decreasing serum level of pro-inflammatory cytokines, such as interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α); changing the event-related potential in electroencephalogram (EEG) and restoring microbiota flora in the gut of AUD patients.

    METHODS AND ANALYSIS: Initially, during Phase I of the study, the serum level of IL-1β, IL-6 and TNF-α; ERP changes in the EEG and fecal microbiota content will be compared between 120 AUD patients and 120 healthy controls. Subsequently in Phase II of the study, 120 AUD patients will be randomized by stratified permuted block randomization into the probiotic, ACT and placebo groups in a 1:1:1 ratio. Participants in the probiotic and placebo groups will be administered one sachet per day of Lactobacillus spp. probiotic and placebo, respectively for 12 weeks. While those in the ACT group will receive one session per week of ACT for 8 weeks. Outcome measures will be administered at four timepoints, such as t0 = baseline assessment prior to intervention, t1 = 8 weeks after intervention began, t2 = 12 weeks after intervention and t3 = 24 weeks after intervention. Primary outcomes are the degrees of alcohol craving, alcohol withdrawal during abstinence and AUD. Secondary outcomes to be assessed are the severity of co-morbid depression and anxiety symptoms; the serum levels of IL-1β, IL-6 and TNF-α; changes in ERP and fecal microbiota content.

    TRIAL REGISTRATION NUMBER: NCT05830708 (ClinicalTrials.gov). Registered on April 25, 2023.

    Matched MeSH terms: Interleukin-6
  18. Kalamegam G, Sait KHW, Anfinan N, Kadam R, Ahmed F, Rasool M, et al.
    Oncol Lett, 2019 May;17(5):4521-4531.
    PMID: 30944641 DOI: 10.3892/ol.2019.10094
    Cytokines enhance tumour cell recognition via cytotoxic effector cells and are therefore effectively used in cancer immunotherapy. Mesenchymal stem cells have efficient homing potential and have been used to target and inhibit various types of cancer mediated by the release of soluble/bioactive factors. Initial evaluation of the human Wharton's jelly stem cell conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against an ovarian cancer cell line (OVCAR3) demonstrated their inhibitory effect in vitro. The secreted cytokine profile was then studied to understand whether the OVCAR3 inhibitory effect was mediated by the cytokines. Expression of cytokines in OVCAR3 following 48 h treatment with hWJSC extracts, namely the hWJSC-CM (50%) and hWJSC-CL (10 µg/ml), was evaluated using multiplex cytokine assay. Paclitaxel (5 nM) was used as a positive control. Cytokines tumour necrosis factor α, interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13, IL-17, IL-1β and granulocyte colony-stimulating factor, reported to be involved in tumour growth, invasion and migration, were significantly decreased. Cytokines with antitumour effects, namely IL-1 receptor antagonist (IL-1RA), IL-2, IL-2 receptor, IL-5, IL-7, IL-12, IL-15, interferon (IFN)-α and IFN-γ, were mildly increased or decreased. Only the increases in IL-1RA (with paclitaxel, hWJSC-CM and hWJSC-CL) and granulocyte-macrophage colony-stimulating factor (with hWJSC-CL) were statistically significant. The chemokines monocyte chemoattractant protein 1, macrophage inflammatory protein (MIP)-1α, MIP-1β and Regulated Upon Activation, Normally T-Expressed, and Secreted were significantly decreased while monokine induced by IFN-γ, IFN-γ induced protein 10 and Eotaxin demonstrated mild decreases. The growth factors basic fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor were significantly decreased. Heatmaps demonstrated differential fold changes in cytokines and hierarchical cluster analysis revealed 3 major and 7 minor sub-clusters of associated cytokines, chemokines and growth factors. In conclusion, the hWJSC extracts decreased the expression of oncogenic cytokines, chemokines and growth factors, which mediated the inhibition of OVCAR3 cells in vitro.
    Matched MeSH terms: Interleukin-6
  19. Chin VK, Asyran AMY, Zakaria ZA, Abdullah WO, Chong PP, Nordin N, et al.
    J Parasit Dis, 2019 Mar;43(1):139-153.
    PMID: 30956457 DOI: 10.1007/s12639-018-1070-3
    Triggering receptor expressed on myeloid cells 1 (TREM-1) is a potential molecular therapeutic target for various inflammatory diseases. Despite that, the role of TREM-1 during malaria pathogenesis remains obscure with present literature suggesting a link between TREM-1 with severe malaria development. Therefore, this study aims to investigate the role of TREM-1 and TREM-1 related drugs during severe malaria infection in Plasmodium berghei-infected mice model. Our findings revealed that TREM-1 concentration was significantly increased throughout the infection periods and TREM-1 was positively correlated with malaria parasitemia development. This suggests a positive involvement of TREM-1 in severe malaria development. Meanwhile, blocking of TREM-1 activation using rmTREM-1/Fc and TREM-1 clearance by mTREM-1/Ab had significantly reduced malaria parasitemia and suppressed the production of pro- inflammatory cytokines (TNF-α, IL-6 and IFN-γ) and anti-inflammatory cytokine (IL-10). Furthermore, histopathological analysis of TREM-1 related drug treatments, in particular rmTREM-1/Fc showed significant improvements in the histological conditions of major organs (kidneys, spleen, lungs, liver and brain) of Plasmodium berghei-infected mice. This study showed that modulation of TREM-1 released during malaria infection produces a positive outcome on malaria infection through inhibition of pro-inflammatory cytokines secretion and alleviation of histopathological conditions of affected organs. Nevertheless, further investigation on its optimal dosage and dose dependant study should be carried out to maximise its full potential as immunomodulatory or as an adjuvant in line with current antimalarial agents.
    Matched MeSH terms: Interleukin-6
  20. Safi SZ, Batumalaie K, Qvist R, Mohd Yusof K, Ismail IS
    PMID: 27034691 DOI: 10.1155/2016/5843615
    Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pathways and the proinflammatory cytokines. Methods. HIT-T15 cells were cultured and preincubated with the extract of Gelam honey (20, 40, 60, and 80 μg/mL), as well as quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM glucose. Results. HIT-T15 cells cultured under hyperglycemic condition showed a significant increase in the inflammatory pathways by phosphorylating JNK, IKK-β, and IRS-1 at Ser307 (p < 0.05). There was a significant decrease in the phosphorylation of Akt at Ser473 (p < 0.05). Pretreatment with Gelam honey and quercetin reduced the expression of phosphorylated JNK, IKK-β, and IRS-1, thereby significantly reducing the expression of proinflammatory cytokines like TNF-α, IL-6, and IL-1β (p < 0.05). At the same time there was a significant increase in the phosphorylated Akt showing the protective effects against inflammation and insulin resistance (p < 0.05). In conclusion, our data suggest the potential use of the extract from Gelam honey and quercetin in modulating the inflammation induced insulin signaling pathways.
    Matched MeSH terms: Interleukin-6
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links