Vaginal infection is widespread and > 80% of females encounter such infections during their lives. Topical treatment and prevention of vaginal infection allows direct therapeutic action, reduced drug doses and adverse effects, convenient administration and improved compliance. The advent of nanotechnology results in the use of nanoparticulate vehicle to control drug release, to enhance dosage form mucoadhesive properties and vaginal retention, and to promote mucus and epithelium permeation for both extracellular and intracellular drug delivery.
Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.
This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.
This paper discusses the process technology to fabricate multilayer-Polydimethylsiloxane (PDMS) based microfluidic device for bio-particles concentration detection in Lab-on-chip system. The micro chamber and the fluidic channel were fabricated using standard photolithography and soft lithography process. Conventional method by pouring PDMS on a silicon wafer and peeling after curing in soft lithography produces unspecific layer thickness. In this work, a multilayer-PDMS method is proposed to produce a layer with specific and fixed thickness micron size after bonding that act as an optimum light path length for optimum light detection. This multilayer with precise thickness is required since the microfluidic is integrated with optical transducer. Another significant advantage of this method is to provide excellent bonding between multilayer-PDMS layer and biocompatible microfluidic channel. The detail fabrication process were illustrated through scanning electron microscopy (SEM) and discussed in this work. The optical signal responses obtained from the multilayer-PDMS microfluidic channel with integrated optical transducer were compared with those obtained with the microfluidic channel from a conventional method. As a result, both optical signal responses did not show significant differences in terms of dispersion of light propagation for both media.
Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.
Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.
We present a compact, cost-effective, label-free, real-time biosensor based on long-range surface plasmon polariton (LRSPP) gold (Au) waveguides for the detection of dengue-specific immunoglobulin M (IgM) antibody, and we demonstrate detection in actual patient blood plasma samples. Two surface functionalization approaches are proposed and demonstrated: a dengue virus serotype 2 (DENV-2) functionalized surface to capture dengue-specific IgM antibody in blood plasma and the reverse, a blood plasma functionalized surface to capture DENV-2. The results obtained via these two surface functionalization approaches are comparable to, or of greater quality, than those collected by conventional IgM antibody capture enzyme linked immunosorbent assay (MAC-ELISA). Our second functionalization approach was found to minimize nonspecific binding, thus improving the sensitivity and accuracy of the test. We also demonstrate reuse of the biosensors by regenerating the sensing surface down to the virus (or antibody) level or down to the bare Au.
Nanofibrillated cellulose from biomass has recently gained attention owing to their biodegradable nature, low density, high mechanical properties, economic value and renewability. Although they still suffer from two major drawbacks. The first challenge is the exploration of raw materials and its application in nanocomposites production. Second one is high energy consumption regarding the mechanical fibrillation. However, pretreatments before mechanical isolation can overcome this problem. Hydrophilic nature of nano-size cellulose fibers restricts good dispersion of these materials in hydrophobic polymers and therefore, leads to lower mechanical properties. Surface modification before or after mechanical defibrillation could be a solution for this problem. Additionally, drying affects the size of nanofibers and its properties which needs to study further. This review focuses on recent developments in pretreatments, nanofibrillated cellulose production and its application in nanopaper applications, coating additives, security papers, food packaging, and surface modifications and also for first time its drying.
Bacterial cellulose (BC) is a biopolymer with significant potential for the development of novel materials. This work aimed to prepare and characterize BC powders from nata de coco, and assess the possible enhancement of the powder properties by spray drying. Therefore, BC powders prepared by acid treatment and mechanical processing were spray-dried, and characterized according to their morphology, flowability, thermal stability, water retention capacity, and compared with commercial microcrystalline cellulose (MCC). The powders redispersibility and suspensions rheology were also evaluated. SEM showed that spray-dried BC microparticles exhibited semispherical shape and had flow rate of 4.23 g s(-1) compared with 0.52 g s(-1) for MCC. Particle size analysis demonstrated that spray-dried BC microparticles could be redispersed. TGA showed that BC samples had higher thermal stability than MCC. Water retention capacities of BC samples were greater than MCC. These findings provide new insight on the potential applications of spray-dried BC as a promising pharmaceutical excipient.
The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.
Psoriasis is an incurable skin disorder affecting 2-3% of the world population. The scaliness of psoriasis is a key assessment parameter of the Psoriasis Area and Severity Index (PASI). Dermatologists typically use visual and tactile senses in PASI scaliness assessment. However, the assessment can be subjective resulting in inter- and intra-rater variability in the scores. This paper proposes an assessment method that incorporates 3D surface roughness with standard clustering techniques to objectively determine the PASI scaliness score for psoriasis lesions. A surface roughness algorithm using structured light projection has been applied to 1999 3D psoriasis lesion surfaces. The algorithm has been validated with an accuracy of 94.12%. Clustering algorithms were used to classify the surface roughness measured using the proposed assessment method for PASI scaliness scoring. The reliability of the developed PASI scaliness algorithm was high with kappa coefficients>0.84 (almost perfect agreement).
Forsterite (Mg2SiO4) because of its exceptionally high fracture toughness which is close to that of cortical bones has been nominated as a possible successor to calcium phosphate bioceramics. Recent in vitro studies also suggest that forsterite possesses good bioactivity and promotes osteoblast proliferation as well as adhesion. However studies on preparation and sinterability of nanocrystalline forsterite remain scarce. In this work, we use a solid-state reaction with magnesium oxide (MgO) and talc (Mg3Si4(OH)2) as the starting precursors to synthesize forsterite. A systematic investigation was carried out to elucidate the effect of preparatory procedures including heat treatment, mixing methods and sintering temperature on development of microstructures as well as the mechanical properties of the sintered forsterite body.
In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose.
In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.
The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.
This study investigates the effects of calcium carbonate (CaCO(3)) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO(3) were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO(3) nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO(3). Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO(3). The thermal stability was best enhanced at 1 wt% of CaCO(3) nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO(3) nanocomposite. TEM micrograph displays good dispersion of CaCO(3) at lower nanoparticle loading within the matrix.
The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer.
A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.