Objective: This work aimed to explore the possibility of using Fourier-transform infrared (FTIR) spectroscopy and chemometrics to develop multivariate models to authenticate the "halal-ity" of pharmaceutical excipients with controversial halal status (e.g., magnesium stearate).
Materials and Methods: The FTIR spectral fingerprints of the substance were used to build principal component analysis (PCA) models. The effects of different spectral pretreatment processes such as auto-scaling, baseline correction, standard normal variate (SNV), first, and second derivatives were evaluated. The optimization of the model performance was established to ensure the sensitivity, specificity, and accuracy of the predicted models.
Results: Significant peaks corresponding to the properties of the compound were identified. For both bovine and plant-derived magnesium stearate, the peaks associated can be seen within the regions 2900cm-1 (C-H), 2800cm-1 (CH3), 1700cm-1 (C=O), and 1000-1300cm-1 (C-O). There was not much difference observed in the FTIR raw spectra of the samples from both sources. The quality and accuracy of the classification models by PCA and soft independent modeling classification analogy (SIMCA) have shown to improve using spectra optimized by first derivative followed by SNV smoothing.
Conclusion: This rapid and cost-effective technique has the potential to be expanded as an authentication strategy for halal pharmaceuticals.
Objective: The aim of this study was to conduct a cost-effectiveness analysis of spending on healthcare R&D to address the needs of developing innovative therapeutic products in Indonesia.
Methods: A decision tree model was developed by taking into account four stages of R&D: stage 1 from raw concept to feasibility, stage 2 from feasibility to development, stage 3 from development to early commercialization, and stage 4 from early to full commercialization. Considering a 3-year time horizon, a stage-dependent success rate was applied and analyses were conducted from a business perspective. Two scenarios were compared by assuming the government of Indonesia would increase GERD in health and medical sciences up to 2- and 3-times higher than the baseline (current situation) for the first and second scenario, respectively. Cost per number of innovative products in health and medical sciences was considered as the incremental cost-effectiveness ratio (ICER). Univariate sensitivity analysis was conducted to investigate the effects of different input parameters on the ICER.
Results: There was a statistically significant association (P-value<0.05) between countries' GERD in medical and health sciences with the number of innovative products. We estimated the ICER would be $8.50 million and $2.04 million per innovative product for the first and second scenario, respectively. The sensitivity analysis showed that the success rates in all stages and total GERD were the most influential parameters impacting the ICER.
Conclusion: The result showed that there was an association between GERD in medical and health sciences with the number of innovative products. In addition, the second scenario would be more cost-effective than the first scenario.
METHOD: The dispensing system is based on an Arduino circuit breadboard where an ATmega328p microcontroller was pre-installed. To sense the proximity, a light-dependent resistor (LDR) is used where the laser light is to be blocked after the placement of human hands, hence produced a sharp decrease in the LDR sensor value. Once the LDR sensor value exceeds the lower threshold, the pump is actuated by the microcontroller, and the sanitizer dispenses through the nozzle.
RESULTS AND DISCUSSION: A novel design and subsequent fabrication of a low-cost, touchless, automated sanitizer dispenser to be used in public places, was demonstrated. The overall performance of the manufactured device was analyzed based on the cost and power consumption, and environmental factors by deploying it in busy public places as well as in indoor environment in major cities in Bangladesh, and found to be more efficient and cost-effective compared to other dispensers available in the market. A comprehensive discussion on this unique design compared to the conventional ultrasonic and infra-red based dispensers, is presented to show its suitability over the commercial ones. The guidelines of the World Health Organization are followed for the preparation of sanitizer liquid. A clear demonstration of the circuitry connections is presented herein, which facilitates the interested individual to manufacture a cost-effective dispenser device in a relatively short time and use it accordingly. Conclusion: This study reveals that the LDR-based automated hand sanitizer dispenser system is a novel concept, and it is cost-effective compared to the conventional ones. The presented device is expected to play a key role in contactless hand disinfection in public places, and reduce the spread of infectious diseases in society.
METHODS: The trial is conducted in randomly allocated clusters of low- and medium-cost housing located in the Federal Territory of Kuala Lumpur and Putrajaya. The IVM approach combines: targeted outdoor residual spraying with K-Othrine Polyzone, deployment of mosquito traps as auto-dissemination devices, and community engagement activities. The trial includes 300 clusters randomly allocated in a 1:1 ratio. The clusters receive either the preventive IVM in addition to the routine vector control activities or the routine vector control activities only. Epidemiological data from monthly confirmed dengue cases during the study period will be obtained from the Vector Borne Disease Sector, Malaysian Ministry of Health e-Dengue surveillance system. Entomological surveillance data will be collected in 12 clusters randomly selected from each arm. To measure the effectiveness of the IVM approach on dengue incidence, a negative binomial regression model will be used to compare the incidence between control and intervention clusters. To quantify the effect of the interventions on the main entomological outcome, ovitrap index, a modified ordinary least squares regression model using a robust standard error estimator will be used.
DISCUSSION: Considering the ongoing expansion of dengue burden in Malaysia, setting up proactive control strategies is critical. Despite some limitations of the trial such as the use of passive surveillance to identify cases, the results will be informative for a better understanding of effectiveness of proactive IVM approach in the control of dengue. Evidence from this trial may help justify investment in preventive IVM approaches as preferred to reactive case management strategies.
TRIAL REGISTRATION: ISRCTN ISRCTN81915073 . Retrospectively registered on 17 April 2020.