Displaying publications 141 - 160 of 302 in total

Abstract:
Sort:
  1. Ku Marsilla Ku Ishak, Zulkifli Ahmad, Hazizan Md Akil
    MyJurnal
    Chitosan was chemically modified with bulky structure, cis-5-norbornene-2, 3-dicarboxylic anhydride and the characteristic of this modified chitosan was studied. The resulting material was analyzed by FTIR, TGA, DSC, XRD and SEM to study the effect of N-acylation to the polysaccharide structure. FTIR results show that the anhydride monomer was successfully bound to amine group of chitosan. Thermal analysis of the modified structure provides the chitosan fibers with thermal stability while XRD and SEM show the lost of crystallinity of modified chitosan. XRD of modified chitosan shows broader peak pattern and a considerable increase in a dimension while SEM of chitosan presented the single particle morphology while norbornene-chitosan shows aggromolarate behaviour due to the hydrophobic nature of norbornene pendant group which induced aggromolaration of the particles in modified structure.
    Matched MeSH terms: Dietary Fiber
  2. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Asian-Australas J Anim Sci, 2019 Feb;32(2):224-232.
    PMID: 29879832 DOI: 10.5713/ajas.18.0175
    OBJECTIVE: Apart from various climatic differences, corn harvest stage and varieties are two major factors that can influence the yield and quality of corn silage in the tropics. A study was conducted to determine the optimum harvest stage of four corn varieties for silage production in Malaysia.

    METHODS: Corn was harvested at four growth stages; silking, milk, dough, and dent stages from four varieties; Sweet Corn hybrid 926, Suwan, breeding test line (BTL) 1 and BTL 2. Using a split plot design, the treatments were then analysed based on the plant growth performance, yield, nutritive and feeding values followed by a financial feasibility study for potential commercialization.

    RESULTS: Significant differences and interactions were detected across the parameters suggesting varying responses among the varieties towards the harvest stages. Sweet Corn was best harvested early in the dough stage due to high dry matter (DM) yield, digestible nutrient, and energy content with low fibre portion. Suwan was recommended to be harvested at the dent stage when it gave the highest DM yield with optimum digestible nutrient and energy content with low acid detergent fibre. BTL 1 and BTL 2 varieties can either be harvested at dough or dent stages as the crude protein, crude fibre, DM yield, DM content, digestible nutrient and energy were not significantly different at either stage. Further financial analysis showed that only Sweet Corn production was not financially feasible while Suwan had the best financial appraisal values among the grain varieties.

    CONCLUSION: In conclusion, only the grain varieties tested had the potential for silage making according to their optimum harvest stage but Suwan is highly recommended for commercialization as it was the most profitable.

    Matched MeSH terms: Dietary Fiber
  3. Chan, Kok Meng, Farah Diyana Ariffin, Aminah Abdullah, Shahrul Hisham Zainal Ariffin
    MyJurnal
    Seaweed contains various nutrients that has the potential to be a source of nutritious food, but only a few studies done on
    the red seaweeds in Malaysia. Therefore, this study was conducted to determine the macronutrients content, amino acid
    profile and fatty acid component in Kappaphycus alvarezii and Kappaphycus striatum. The study found that the range
    of moisture, fat, ash, protein, fiber and carbohydrates content for both red seaweeds were 6.9% - 7.3%, 0.5% - 2.6%,
    29.4% - 30.9%, 2.5% - 5.7% , 5.3% - 5.5% and 50.1% - 53.3% respectively. A total of 16 amino acids were identified
    in which the essential amino acid for K. alvarezii and K. striatum were 41.11% and 36.15% respectively. A total of 34
    fatty acids were identified in which the content of saturated fatty acids (SFA) was the highest (42.7% - 72.8%), followed
    by mono-unsaturated fatty acid (MUFA) (13.8% - 36.2%) and polyunsaturated fatty acids (PUFAs) was the lowest (13.5%
    - 21.2%). In conclusion, this study suggest that K. alvarezii and K. striatum are potentially be used as raw materials or
    food ingredients to improve the nutritional value of the human diet.
    Matched MeSH terms: Dietary Fiber
  4. Othman NA, Abdul Manaf M, Harith S, Wan Ishak WR
    J Am Coll Nutr, 2018 04 13;37(7):583-588.
    PMID: 29652576 DOI: 10.1080/07315724.2018.1451408
    OBJECTIVE: The feasibility of developing reduced-fat muffins with avocado is investigated by preparing muffins with 25%, 50%, 75%, and 100% avocado purée as a fat (butter) replacer.

    METHODOLOGY: The resulting products were compared to the control muffin, which was made with 100% butter. Muffins were analyzed for nutritional content, fatty acid profiles, and sensory acceptability.

    RESULT: Muffins incorporated with avocado purée revealed a significant increase (p < 0.05) with respect to moisture, ash, and carbohydrate in comparison with the control sample. However, no significant changes (p > 0.05) were detected in all muffin formulations for protein and dietary fiber content. Both fat content and caloric value of muffins incorporated with avocado purée were significantly decreased (p < 0.05). The fatty acid profile showed that there was an increment in the monounsaturated fatty acids (MUFA) content by 16.51% at full-fat substitution. The sensory evaluation test demonstrated that muffins had acceptability at up to 50% substitution. Fat substitution at higher than 50% lead to undesirable flavor and aftertaste, which was significant (p < 0.05) to the panelists.

    CONCLUSION: The findings indicated the feasibility of avocado purée in fat-reduced muffin preparation with an optimal level of 50% avocado purée substitution.

    Matched MeSH terms: Dietary Fiber
  5. Aslinah LNF, Mat Yusoff M, Ismail-Fitry MR
    J Food Sci Technol, 2018 Aug;55(8):3241-3248.
    PMID: 30065435 DOI: 10.1007/s13197-018-3256-1
    Adzuki bean is high in protein and fiber with a potential to be used as meat extender and fat replacer in the meat product. Replacement of both the corn flour and fat with different percentages of adzuki beans flour (ABF) has successfully produced acceptable reduced fat meatballs. Meatballs with 100% (w/w) ABF replacement exhibited highest cooking yield and higher moisture content compared to meatballs without the flour, which indicates its ability to bind water. Increasing the ABF content also increased the hardness and chewiness of the meatballs, whilst decreasing their lightness and yellowness. Replacing the corn flour and fat contents with ABF has obviously decreased the fat and calorie contents of the meatballs, yet their protein and carbohydrate contents remained the same compared to control. The sensory test revealed that meatball samples with 25% (w/w) and 50% (w/w) ABF showed no significant difference compared to control but received highest overall acceptability among the panelists. This indicates that replacement of corn flour and fat with ABF especially at 50% (w/w) in the production of reduced fat meatballs resulted with better physicochemical properties and acceptable sensory compared to original meatballs.
    Matched MeSH terms: Dietary Fiber
  6. Rezania S, Park J, Md Din MF, Mat Taib S, Talaiekhozani A, Kumar Yadav K, et al.
    Mar Pollut Bull, 2018 Aug;133:191-208.
    PMID: 30041307 DOI: 10.1016/j.marpolbul.2018.05.022
    Microplastics (MPs) are generated from plastic and have negative impact to our environment due to high level of fragmentation. They can be originated from various sources in different forms such as fragment, fiber, foam and so on. For detection of MPs, many techniques have been developed with different functions such as microscopic observation, density separation, Raman and FTIR analysis. Besides, due to ingestion of MPs by wide range of marine species, research on the effect of this pollution on biota as well as human is vital. Therefore, we comprehensively reviewed the occurrence and distribution of MPs pollution in both marine and freshwater environments, including rivers, lakes and wastewater treatment plants (WWTPs). For future studies, we propose the development of new techniques for sampling MPs in aquatic environments and biota and recommend more research regarding MPs release by WWTPs.
    Matched MeSH terms: Dietary Fiber
  7. Khairiatul Nabilah Jansar, Ahmad Muhaimin Roslan, Mohd Ali Hassan
    MyJurnal
    Oil palm (Elaeis guineensis Jacq.) is one of the most planted trees in Malaysia for the palm oil production. Thus, solid biomass had been generated from this industry such as empty fruit bunch, shell, mesocarp fibre, frond and trunk produced that causes problematic to the nation and expected to escalate up to 85-110 million tonnes by 2020. Besides that, palm oil mill effluent and excessive steam also generated from the production of palm oil. In situ hydrothermal pretreatment means the utilisation of excessive steam produced by the oil palm mill and at the same time, generating value added product as well as reducing the biomass. Oil palm biomass is rich in lignocellulosic materials which comprised of lignin, hemicellulose and cellulose. Refinement of lignocellulosic from oil palm biomass can be utilised to form fermentable sugar, bioethanol and other potential chemicals. Recalcitrant property of lignocellulosic reduces the ability of enzymes to penetrate, thus pretreatment is required prior to hydrolysis process. Pretreatment can be either physical, chemical, biological or combined. In this review paper, three types of hydrothermal pretreatment were discussed as suitable in situ pretreatment process for oil palm biomass; in palm oil mill. The suitability was measured based on the availability of excess steam and energy in the mill. Furthermore, physicochemical pretreatment also facilitate the saccharification process, whereby it loosened the lignocellulose structure and increase the surface area. The effects and factors in choosing right pretreatment are highlighted in this paper.
    Matched MeSH terms: Dietary Fiber
  8. Lee, C.M., Tang, T.K., Lai, O.M., Chan, Y.L., Gan, Y.L., Tan C.P.
    Food Research, 2018;2(5):453-459.
    MyJurnal
    The primary objectives of this study were to process corncob into corncob powder (CCP)
    and to apply CCP in the formulation of instant cereal beverage (ICB) in order to produce
    high fibre ICB, and to investigate the physicochemical and sensory properties of the
    corncob-based instant cereal beverage. Corncobs were sourced and washed thoroughly
    before drying and grinding into CCP. CCP was then imparted into ICB formulation in
    three different ratios (10, 20 and 30% w/w) to partially substitute corn flour in the
    formulation. All four ICB samples including the commercial counterpart were analysed
    for their physicochemical and sensory properties. The incorporation of CCP has affected
    the viscosity, colour and sensory attributes significantly of the produced ICB. Higher
    contents of CCP in the formulation was found to be responsible for less viscous and
    browner effect compared to the commercial ICB samples. Formulation of ICB
    incorporated with 30% w/w CCP had the highest mean scores (6.00, p
    Matched MeSH terms: Dietary Fiber
  9. Khoo W, Chung SM, Lim SC, Low CY, Shapiro JM, Koh CT
    Data Brief, 2019 Dec;27:104718.
    PMID: 31763388 DOI: 10.1016/j.dib.2019.104718
    Data in this article are supplementary to the corresponding research article [1]. Morphological features of homogeneous and graded nanofibrous electrospun gelatin scaffolds were observed using scanning electron microscopy. Microstructural properties including fiber diameter and pore size were determined via image analysis, using ImageJ. Uniaxial tensile and fracture tests were performed on both homogeneous and graded scaffolds using a universal testing machine. Stress-strain curves of all scaffolds are presented. Computing software, MATLAB, was used to design fibrous networks with thickness-dependent density and alignment gradients (DAG). Finite element analysis software, Abaqus, was used to determine the effect of the number of layers on the fracture properties of DAG multilayer scaffolds.
    Matched MeSH terms: Dietary Fiber
  10. Wirawan R, Zainudin E, Sapuan S
    Poly (vinyl chloride), which is commonly abbreviated as PVC, is widely used due to it being inexpensive, durable, and flexible. As a hard thermoplastic, PVC is used in the applications such as in building materials pipe and plumbing. The factors that should be considered in using PVC is safety and environmental issues. Mixing PVC with natural fibres is an interesting alternative. The main challenge in the research on natural fibre/polymer composites is the poor compatibility between the fibres and the matrix because this will affect their bonding strength. During the mixing with PVC, some natural fibres may acts as reinforcing materials while other natural fibres only act as filler, which contribute less to mechanical strength improvement. However, generally natural fibres also give positive outcome to the stiffness of the composites while decreasing the density.
    Matched MeSH terms: Dietary Fiber
  11. Rahmadini Syafri, Ishak Ahmad, Ibrahim Abdullah
    Sains Malaysiana, 2011;40:1123-1127.
    Surface modification of rice husk (RH) with alkali pre-treatment (NaOH solution 5% w/v) was carried out at the initial state to investigate the effect of surface treatment of fibre on the surface interaction between fibre and rubber. Further modification of RH surfaces after alkali treatment was using Liquid Epoxidized Natural Rubber (LENR) coating at three concentrations, 5%, 10%, and 20% wt LENR solution in toluene. Interfacial morphology and chemical reactions between RH fibre and rubber were analyzed by FTIR and Scanning Electron Microscope (SEM). It was found that 10% wt LENR solution gave the optimum interaction between fibre and rubber. Matrix and composite blends derived from 60% natural rubber (NR), 40% high density polyethylene (HDPE) reinforced with RH fibre were prepared using an internal mixer (Brabender Plasticoder). Result showed that pre-treatment of RH treated with 5% NaOH followed by treatment with 10% LENR solution given the maximum interaction between fibre and matrix that gave rise to better mechanical properties of the composites.
    Matched MeSH terms: Dietary Fiber
  12. Wan Rosli W. I., Chow Y
    Sains Malaysiana, 2014;43:1503-1508.
    Sufficient intakes of functional foods containing significant amount of dietary fibre in daily diet are beneficial to human health especially in preventing the prevalence of non-communicable diseases (NCDs). In this study, young corn powder (YCP) was added into Malaysian star cake (Baulu Cermai) to replace wheat flour (WF) partially at the formulations of 5, 10 and 15%. Baulu Cermai with 100% WF and 0% YCP was used as the control. The aim of the present study was to evaluate the effects of YCP addition on the nutritional composition, textural properties and sensory attributes of Baulu Cermai. The results showed that the mean values of moisture, ash, fat and protein content of Baulu Cermai increased in line with the levels of YCP incorporation. In addition, the total dietary fibre (TDF) content was increased proportionally with the increasing levels of YCP added into Baulu Cermai. Addition of YCP did not show any predictable trend in all the textural properties of Baulu Cermai. Meanwhile, the aroma, chewiness and tenderness increased in parallel with the increasing percentages of YCP added in the formulated products. Baulu Cermai added with 10% of YCP showed the highest score of overall acceptance. Addition of YCP at 10% into Baulu Cermai increases moisture, ash, fat, protein and total dietary fibre content without significantly affecting the textural properties and the sensory attributes of Baulu Cermai. Addition of YCP at 5% to replace WF partially in Baulu Cermai resulted in slight improvement of TDF and fat but does not affected moisture, ash, protein content and acceptability of the consumers.
    Matched MeSH terms: Dietary Fiber
  13. Nor Rabbi’atul ‘Adawiyah Norzali, Khairiah Badri, Mohd Zaki Nuawi
    The effect of adding aluminum hydroxide (ATH) in the palm-based polyurethane hybrid composite was studied. The compression stress and modulus, thermal conductivity and acoustic property were determined. The hybrid composite was prepared by adding 10 wt% of oil palm empty fruit bunch fibre (EFB) followed by ATH at varying amount of 2, 4 and 6 wt% of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 kPa and 2301 kPa, respectively at 2 wt% ATH. At 4 wt% ATH, the compression stress and modulus decreased to 431 kPa and 1659 kPa, respectively and further decreased at 6 wt% ATH to 339 kPa and 1468 kPa respectively. The k-value increased with the increment of the ATH loading exhibited a poor thermal conductivity. Sound absorption analysis indicated that the absorption coefficient was higher at higher frequency (4000 Hz) for all samples with PU-EFB/ATH with 4% ATH showed the highest absorption coefficient.
    Matched MeSH terms: Dietary Fiber
  14. Sarani Zakaria, Rasidi Roslan, Umar Adli Amran, Chia CH, Saiful Bahari Bakaruddin
    Sains Malaysiana, 2014;43:429-435.
    Different type of fibers which is EFB and KC were liquefied in phenol with the presence of sulphuric acid as a catalyst. The liquefied residue was characterized by using Fourier transform infrared (FTIR) to determine the functional groups presents in both residues, X-ray diffraction (XRD) to determine the degree of crystallinity in the residue, thermogravimetric analysis (TGA) to analyze the thermal properties of the residue and scanning electron microscope (SEM) to investigate the structure and morphology of the residue. Phenol-to-EFB/KC ratio shows great effect on the amount of residue in the liquefaction process. Peak appearance can be observed in the FTIR analysis at 810 and 750 cm-1 which is attributed to the para and meta benzene, respectively or to be specific its associated to the p-alkyl phenol and m-alkyl phenol. In the XRD analysis, CrI of lignocellulosic materials increased after liquefaction process. Liquefaction process caused chemical penetration across the grain of the fiber, thus the fiber bundles started to separate into individual fibers shown in the SEM micrograph and the weights lost curve for both liquefied EFB and KC experienced three region decompositions.
    Matched MeSH terms: Dietary Fiber
  15. Aimi Adzirul kamarubahrin, Asmaddy Haris, Siti Nurazira Mohd Daud, Zurina kefeli @ Zulkefli, Nursilah Ahmad, Nurul Aini Muhamed, et al.
    MyJurnal
    Awareness of recommendations for fruit and vegetable consumption has increased substantially over the last 20 years. In addition, fruits and vegetables such as pumpkin (Cucurbita moschata Duchesne) are good sources of many important nutrients, including potassium, vitamin C, folate, fibre, and numerous phytochemicals. Malaysia produces pumpkinits own, with considerably large areas of production comparable to its high global demand. However, in reality, there is a limitation in the commercial production as the local pumpkinis very much dependent on the market demand as the utilization has been limited to the consumption of fresh product. Thus, the objective of the study first initiative to provide the information about the pumpkinand second to investigatesthe opportunities on commercialized local pumpkinin Malaysia as by products despite various nutritious it is also listed as prophetic foods. The scientific research that covered a broad range of in vitro to in vivo studies on the by-products potentials of these fruits is also discussed in detail.The current review is an update for researchers to have a better understanding of the pumpkin, which simultaneously can provide awareness to enhance their commercial value and promote their utilization.Malaysia have potential to growth pumpkin instead of continuously importing. The daily consumption of pumpkins may provide various health benefits to human. Future investigation is needed to explore the potential of pumpkin as by products in order to increase its competitiveness and self-sufficiency.
    Matched MeSH terms: Dietary Fiber
  16. Siti Noorul Aina Ab Rahim, Sarani Zakaria, Sharifah Nabihah Syed Jaafar, Chin HC, Rasidi Roslan, Hatika Kaco, et al.
    Sains Malaysiana, 2017;46:1659-1665.
    Bio-novolac fibre made from phenol-formaldehyde derived oil palm empty fruit bunch (EFB) was produced using electrospinning method. The bio-novolac phenol-formaldehyde was prepared via liquefaction and resinification at two different molar ratios of formaldehyde to liquefied EFB (LEFB) (F:LEFB = 0.5:1 and 0.8:1). Electrospinning was applied to the bio-novolac phenol-formaldehyde (BPF) in order to form smooth and thin as-spun fibre. The BPF was electrospun at 15 kV and 15 cm distance between needle and collector at a flow rate of 0.5 mL/h. At lower molecular weight of BPF resin, beads formation was observed. The addition of poly(vinyl) butyral (Mw = 175,000 - 250,000) has improved the fibre formation with lesser beads hence produced more fibre. Polymer solution with higher molecular weight produced better quality fibre.
    Matched MeSH terms: Dietary Fiber
  17. Hassan MZ, Roslan SA, Sapuan SM, Rasid ZA, Mohd Nor AF, Md Daud MY, et al.
    Polymers (Basel), 2020 Jun 17;12(6).
    PMID: 32560539 DOI: 10.3390/polym12061367
    The objective of this research is to optimize the alkaline treatment variables, including sodium hydroxide (NaOH) concentration, soaking, and drying time, that influence the mechanical behavior of bamboo fiber-reinforced epoxy composites. In this study, a Box-Behnken design (BBD) of the response surface methodology (RSM) was employed to design an experiment to investigate the mercerization effect of bamboo fiber-reinforced epoxy composites. The evaluation of predicted tensile strength as a variable parameter of bamboo fiber (Bambusa vulgaris) reinforced epoxy composite structures was determined using analysis of variance (ANOVA) of the quadratic model. In this study, a total of 17 experiment runs were measured and a significant regression for the coefficient between the variables was obtained. Further, the triangular and square core structures made of treated and untreated bamboo fiber-reinforced epoxy composites were tested under compressive loading. It was found that the optimum mercerization condition lies at 5.81 wt.% of the NaOH, after a soaking time of 3.99 h and a drying time of 72 h. This optimum alkaline treatment once again had a great effect on the structures whereby all the treated composite cores with square and triangular structures impressively outperformed the untreated bamboo structures. The treated triangular core of bamboo reinforced composites gave an outstanding performance compared to the treated and untreated square core composite structures for compressive loading and specific energy absorbing capability.
    Matched MeSH terms: Dietary Fiber
  18. Asyraf MRM, Ishak MR, Norrrahim MNF, Nurazzi NM, Shazleen SS, Ilyas RA, et al.
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1587-1599.
    PMID: 34740691 DOI: 10.1016/j.ijbiomac.2021.10.221
    Biocomposites are materials that are easy to manufacture and environmentally friendly. Sugar palm fibre (SPF) is considered to be an emerging reinforcement candidate that could provide improved mechanical stiffness and strength to the biocomposites. Numerous studies have been recently conducted on sugar palm biocomposites to evaluate their physical, mechanical and thermal properties in various conditions. Sugar palm biocomposites are currently limited to the applications of traditional household products despite their good thermal stability as a prospective substitute candidate for synthetic fibres. Thus, thermal analysis methods such as TGA and DTG are functioned to determine the thermal properties of single fibre sugar palm composites (SPCs) in thermoset and thermoplastic matrix as well as hybrid SPCs. The biocomposites showed a remarkable change considering thermal stability by varying the individual fibre compositions and surface treatments and adding fillers and coupling agents. However, literature that summarises the thermal properties of sugar palm biocomposites is unavailable. Particularly, this comprehensive review paper aims to guide all composite engineers, designers, manufacturers and users on the selection of suitable biopolymers for sugar palm biocomposites for thermal applications, such as heat shields and engine components.
    Matched MeSH terms: Dietary Fiber
  19. Fadel A, Plunkett A, Ashworth J, Mahmoud AM, Ranneh Y, El Mohtadi M, et al.
    J Food Sci Technol, 2018 Mar;55(3):1201-1206.
    PMID: 29487463 DOI: 10.1007/s13197-017-3010-0
    Arabinoxylans (AXs) are major dietary fibre in cereals. Recently, AXs have attracted a great deal of attention because of their biological activities. These activities have been suggested to be related to the content of low molecular weight (Mw) AXs, in particular those with Mw below 32 kDa. Rice bran is a rich source of AXs. However, water extraction of AXs is difficult and often gives low yield. Extrusion processing has been used to increase the solubility of cereal dietary fibre. The aim of this research was to study the effect of extrusion screw-speeds (80 and 160) rpm on the extraction yield and Mw of water extractable AXs from rice bran. It was found that the extraction of AXs increased significantly with an increase in screw speed and was accompanied by a significant decrease in the Mw of AXs from extruded rice bran. The percentage of very low molecular weight AXs (0.79-1.58 kDa) significantly increased with increasing screw speed.
    Matched MeSH terms: Dietary Fiber
  20. Lim, J.Y., Wan Rosli, W.l.
    MyJurnal
    Consumption of dietary fibre-rich food has been associated with various beneficial physiological properties and health effects. Presently, different types of natural fibre-rich ingredients are added into variety of bakery-based products to improve it fibre content for health promotional purposes. However, majority of these products are frequently added with imported dietary fibre ingredients. In the present study, bread samples were prepared with Zea mays ear (young corn) powder at the levels of either 2%, 4% or 6%. The bread samples were analyzed for nutritional composition, textural properties and sensory acceptance. Addition of young corn powder (YCP) at the level of 6% increases total dietary fibre (from 3.48% to 5.26%), moisture (from 25.64% to 26.55%), fat (from 4.35% to 4.61%) and protein content (from 9.13% to 9.51%) significantly. However, with the increasing of YCP levels in the bread, the carbohydrate content was decreased significantly (from 59.93% to 58.34%) while the ash content (from 0.95% to 0.99%) was not significantly affected. Results of texture profile analysis indicated that addition of YCP up to 6% not significantly affected the springiness (1.01-1.00) but significantly decreased cohesiveness (0.95-0.82). However, the addition of YCP up to 6% has increased hardness (0.18kg-0.57kg), gumminess (0.17kg-0.47kg) and chewiness (0.18kg-0.47kg) attributes of bread samples. On the other result, the sensory evaluation shows that the flavour score was not significantly affected by addition of YCP up to 4% (4.82-4.52) while the tenderness (4.53-4.42), elasticity (4.75-4.58), aroma (4.40-4.47), colour (4.93-4.55) and overall acceptance (4.80-4.35) scores were not significant affected up to 6%. In summary, breads with 4% addition of YCP were considered to be acceptable and potentially used in improving nutritional composition without changing sensory score.
    Matched MeSH terms: Dietary Fiber
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links