MATERIALS AND METHODS: Whole ethanol extract (WE) of the nuts, and its liquid-liquid fractions-ethyl acetate (ET) and residue (RES) were separately administered to obese rats for 6 weeks. The normal (NC) and obese (OC) controls received normal saline and the standard control (SC), orlistat (5.14 mg/kg b.w.), during the same period. Thereafter, the animals were euthanized and the adipose, brain, kidneys and heart tissues were studied.
RESULTS: The change in body weight to naso-anal length which increased by 63.52 % in OC compared to NC (p < 0.05), decreased by 57.88, 85.80 and 70.20 % in WE, ET and RES-treated groups, respectively, relative to the OC (p < 0.05). Also, adipose tissue weights were lowered upon treatment with the extracts and fractions versus OC (p < 0.05). Total lipids, phospholipids, triacylglycerol and cholesterol concentrations in the studied tissues which were higher in OC (p < 0.05) were lowered (p < 0.05) and compared favorably with SC. Further, malondialdehyde levels in the tissues were lowered upon treatment, compared to the OC (p < 0.05). Glutathione level and activities of glutathione peroxidase, superoxide dismutase and glutathione-S-transferase which were decreased (p < 0.05) in OC, were restored upon treatment with the extracts, relative to the obese control (p < 0.05).
SIGNIFICANCE: African walnuts assuaged lipogenesis, oxidative stress and peroxidation in extra-hepatic tissues of obese rats, hence, may attenuate ectopic fat accumulation and its associated pathogenesis.
METHODS: Pressurized hot water extraction P. tenellus was carried out and standardized to 7.9% hydrosable tannins. In vitro toxicity of the extract was tested on NIH 3 T3 cell by MTT assay. The cellular antioxidant level was quantified by measuring cellular level of glutathione. Oral sub-chronic toxicity (200, 1000 and 3000 mg/kg body weight) of P. tenellus extract were evaluated on healthy mice. Liver and kidney antioxidant level was quantified by measuring levels of Ferric Reducing Antioxidant Potential (FRAP), superoxide dismutase, glutathione.
RESULTS: The P. tenellus extract did not induce cytotoxicity on murine NIH 3 T3 cells up to 200 μg/mL for 48 h. Besides, level of glutathione was higher in the extract treated NIH 3 T3 cells. P. tenellus extract did not cause mortality at all tested concentration. When treated with 1000 mg/kg of the extract, serum liver enzymes (ALP and ALT) and LDH were lower than normal control and mice treated with 200 mg/kg of extract. Moreover, SOD, FRAP and glutathione levels of liver of the mice treated with 200 and 1000 mg/kg of extract were higher than the normal control mice. On the other hand, when treated with 3000 mg/kg of extract, serum liver enzymes (ALP and ALT) and LDH were higher than normal mice without changing the liver SOD and glutathione level, which may contribute to the histological sign of ballooning hepatocyte.
CONCLUSION: P. tenellus extract standardized with 7.9% hydrosable tannins and their catabolites increased the antioxidant levels while reducing the nitric oxide levels in both liver and kidney without causing any acute and sub-chronic toxicity in the mice.
METHODS: Using the Center for Disease Control and Prevention (CDC) bottle assays, the insecticide resistance status of nine different Ae. aegypti strains from Selangor was accessed. Synergism tests and biochemical assays were conducted to further understand the metabolic mechanisms of insecticide resistance. Polymerase chain reaction (PCR) amplification and sequencing of the IIP-IIS6 as well as IIIS4-IIIS6 regions of the sodium channel gene were performed to enable comparisons between susceptible and resistant mosquito strains. Additionally, genomic DNA was used for allele-specific PCR (AS-PCR) genotyping of the gene to detect the presence of F1534C, V1016G and S989P mutations.
RESULTS: Adult female Ae. aegypti from various locations were susceptible to malathion and propoxur. However, they exhibited different levels of resistance against dichlorodiphenyltrichloroethane (DDT) and pyrethroids. The results of synergism tests and biochemical assays indicated that the mixed functions of oxidases and glutathione S-transferases contributed to the DDT and pyrethroid resistance observed in the present study. Besides detecting three single kdr mutations, namely F1534C, V1016G and S989P, co-occurrence of homozygous V1016G/S989P (double allele) and F1534C/V1016G/S989P (triple allele) mutations were also found in Ae. aegypti. As per the results, the three kdr mutations had positive correlations with the expressions of resistance to DDT and pyrethroids.
CONCLUSIONS: In view of the above outcomes, it is important to seek new tools for vector management instead of merely relying on insecticides. If the latter must be used, regular monitoring of insecticide resistance should also be carried out at all dengue epidemic areas. Since the eggs of Ae. aegypti can be easily transferred from one location to another, it is probable that insecticide-resistant Ae. aegypti can be found at non-dengue outbreak sites as well.
OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality.
MATERIALS AND METHODS: Male albino Wistar rats (10-12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested.
RESULTS: One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis.
CONCLUSION: Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.
METHODS: Tai Chi participants and matched sedentary volunteers age 45 and above were enrolled. Glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities; levels of DNA damage using the comet assay; and malondialdehyde (MDA) and advanced glycation end products (AGE) were determined at 0, 6, and 12 months.
RESULTS: Tai Chi subjects had decreased normal and increased mildly damaged DNA with elevated GPx activity after 6 months (n=25). Plasma MDA and AGE concentrations decreased significantly after 12 months (n=15) accompanied by increased SOD activity. This may be attributed to the hormesis effect, whereby mild induction of oxidative stress at the first 6 months of exercise resulted in stimulation of antioxidant defenses. These parameters were unchanged in the sedentary subjects in the first 6 months (n=27) except for elevated SOD activity. After 12 months, the sedentary subjects (n=17) had decreased normal DNA and increased severely damaged DNA with unaltered MDA and AGE levels while SOD and GPx activities were significantly elevated.
CONCLUSION: Regular Tai Chi exercise stimulated endogenous antioxidant enzymes and reduced oxidative damage markers.