Displaying publications 141 - 160 of 509 in total

Abstract:
Sort:
  1. Martin MB, Chakona A
    Zookeys, 2019;848:103-118.
    PMID: 31160881 DOI: 10.3897/zookeys.848.32211
    Enteromiuspallidus was described by Smith in 1841 without a designated type specimen for the species. Herein, we designate a specimen from the Baakens River system as a neotype for E.pallidus and provide a thorough description for this species to facilitate ongoing taxonomic revisions of southern African Enteromius. Enteromiuspallidus can be distinguished from the other minnows in the "goldie barb group" by having an incomplete lateral line, lack of distinct chevron or tubular markings around lateral line pores, absence of a distinct lateral stripe, absence of wavy parallel lines along scale rows and lack of black pigmentation around the borders of the scales. We provide mtDNA COI sequences for the neotype and an additional specimen from the Baakens River as DNA barcodes of types and topotypes are a fundamental requirement for further taxonomic studies.
    Matched MeSH terms: Rivers
  2. Mohamad N, Abdul Khanan MF, Ahmad A, Md Din AH, Shahabi H
    Sensors (Basel), 2019 Aug 31;19(17).
    PMID: 31480412 DOI: 10.3390/s19173778
    Evaluating water level changes at intertidal zones is complicated because of dynamic tidal inundation. However, water level changes during different tidal phases could be evaluated using a digital surface model (DSM) captured by unmanned aerial vehicle (UAV) with higher vertical accuracy provided by a Global Navigation Satellite System (GNSS). Image acquisition using a multirotor UAV and vertical data collection from GNSS survey were conducted at Kilim River, Langkawi Island, Kedah, Malaysia during two different tidal phases, at high and low tides. Using the Structure from Motion (SFM) algorithm, a DSM and orthomosaics were produced as the main sources of data analysis. GNSS provided horizontal and vertical geo-referencing for both the DSM and orthomosaics during post-processing after field observation at the study area. The DSM vertical accuracy against the tidal data from a tide gauge was about 12.6 cm (0.126 m) for high tide and 34.5 cm (0.345 m) for low tide. Hence, the vertical accuracy of the DSM height is still within a tolerance of ±0.5 m (with GNSS positioning data). These results open new opportunities to explore more validation methods for water level changes using various aerial platforms besides Light Detection and Ranging (LiDAR) and tidal data in the future.
    Matched MeSH terms: Rivers
  3. Fikriah Faudzi, Mohd Fuad Miskon, Kamaruzzaman Yunus, Mokhlesur Rahman
    Sains Malaysiana, 2017;46:393-399.
    It is important to monitor the concentration of toxic metals in the Sungai Kuantan as it serves many communities in terms of domestic, fisheries and agriculture purpose. In order to determine the distributions of dissolved and particulate As and Hg in Sungai Kuantan and evaluate its changes temporally and spatially, water samples were collected from the surface and bottom layers in a grid of 9 stations from estuary towards the upstream of Sungai Kuantan from May 2012 till October 2012. The dissolved metals were pre-concentrated using Chelex-100 while particulate metals were digested using Teflon bomb and subsequently were analyzed using ICP-MS. Dissolved As ranging from 4.650 to 36.894 µg L-1 while dissolved Hg ranging from BDL to 0.011 µg L-1. Particulate As and Hg varied from 0.650 to 86.087 mg L-1 and BDL to 5.873 mg L-1, respectively. Higher concentration of the dissolved elements were found mainly in October 2012 and particulate elements concentration mostly higher in May 2012. The source of the studied metals in the river may be the run-off from the effluent discharges and other natural sources. The toxic elements studied in Sungai Kuantan waters were still below the Interim Marine Water Quality Standard (INWQS) permissible limits.
    Matched MeSH terms: Rivers
  4. Md. Sadek Uddin Chowdhury, Faridah Othman, Wan Zurina Wan Jaafar, Nuzaima Che Mood, Md. Ibrahim Adham
    Sains Malaysiana, 2018;47:457-469.
    Sungai Selangor is very important from the viewpoint of water supply and multipurpose water use in Malaysia. The
    water quality of this river is degrading due to point and non-point sources of pollution. This study, focus on the water
    quality assessment and simulation the effect of the pollution sources from urbanization to the Sungai Selangor basin.
    Water quality Index (WQI) is used to define the status of river water quality and the QUAL2K was used as a simulation
    model. Water quality parameters DO, BOD and NH3
    -N have been chosen for modeling. In addition, five different model
    scenarios were simulated to observe the impacts of pollution sources on the Sungai Selangor water quality. WQI results
    showed that most of the stations in this river basin recorded water inferior to Class III. The water quality model presented
    different scenarios for changes of Sungai Selangor water quality. Simulation results for different scenarios showed
    that reduced levels of BOD and NH3
    -N at 51.10% and 66.18%, respectively, can be obtained if Scenario-5 is employed.
    The river water quality issue in the Rawang sub- basin within the study area is considered crucial to create significant
    improvement within the sub basin and in the downstream area of Sungai Selangor basin.
    Matched MeSH terms: Rivers
  5. Seena S, Bärlocher F, Sobral O, Gessner MO, Dudgeon D, McKie BG, et al.
    Sci Total Environ, 2019 Apr 15;661:306-315.
    PMID: 30677678 DOI: 10.1016/j.scitotenv.2019.01.122
    Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiversity and biogeochemical processes. Here we report on the first large-scale study of biodiversity of leaf-litter fungi in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal communities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S. Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community composition of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is critical to unravel the global patterns of aquatic fungal diversity.
    Matched MeSH terms: Rivers
  6. Zainol Z, Akhir MF, Zainol Z
    Mar Pollut Bull, 2021 Mar;164:112011.
    PMID: 33485016 DOI: 10.1016/j.marpolbul.2021.112011
    Setiu Wetland is rapidly developing into an aquaculture and agriculture hub, causing concern about its water quality condition. To address this issue, it is imperative to acquire knowledge of the spatial and temporal distributions of pollutants. Consequently, this study applied combinations of hydrodynamic and particle tracking models to identify the transport behaviour of pollutants and calculate the residence time in Setiu Lagoon. The particle tracking results indicated that the residence time in Setiu Lagoon was highly influenced by the release location, where particles released closer to the river mouth exhibited shorter residence times than those released further upstream. Despite this fact, the pulse of river discharges successfully reduced the residence time in the order of two to twelve times shorter. Under different tidal phases, the residence time during the neap tide was longer regardless of heavy rainfalls, implying the domination of tidal flow in the water renewal within the lagoon.
    Matched MeSH terms: Rivers
  7. Ahmad Sabri NS, Mohd Mohsi NF, Apandi A, Yusof N, Megat Mohd Noor MJ, Md Akhir FN, et al.
    Microbiol Resour Announc, 2021 Mar 18;10(11).
    PMID: 33737348 DOI: 10.1128/MRA.00025-21
    We report the complete genome sequence of Bacillus sp. strain PR5, isolated from a river receiving hospital and urban wastewater in Malaysia, which demonstrated a high capability for degrading prazosin. This genome sequence of 4,525,264 bp exhibited 41.5% GC content, 4,402 coding sequences, and 32 RNAs.
    Matched MeSH terms: Rivers
  8. Kumar P, Lai SH, Mohd NS, Kamal MR, Afan HA, Ahmed AN, et al.
    PLoS One, 2020;15(9):e0239509.
    PMID: 32986717 DOI: 10.1371/journal.pone.0239509
    In the past few decades, there has been a rapid growth in the concentration of nitrogenous compounds such as nitrate-nitrogen and ammonia-nitrogen in rivers, primarily due to increasing agricultural and industrial activities. These nitrogenous compounds are mainly responsible for eutrophication when present in river water, and for 'blue baby syndrome' when present in drinking water. High concentrations of these compounds in rivers may eventually lead to the closure of treatment plants. This study presents a training and a selection approach to develop an optimum artificial neural network model for predicting monthly average nitrate-N and monthly average ammonia-N. Several studies have predicted these compounds, but most of the proposed procedures do not involve testing various model architectures in order to achieve the optimum predicting model. Additionally, none of the models have been trained for hydrological conditions such as the case of Malaysia. This study presents models trained on the hydrological data from 1981 to 2017 for the Langat River in Selangor, Malaysia. The model architectures used for training are General Regression Neural Network (GRNN), Multilayer Neural Network and Radial Basis Function Neural Network (RBFNN). These models were trained for various combinations of internal parameters, input variables and model architectures. Post-training, the optimum performing model was selected based on the regression and error values and plot of predicted versus observed values. Optimum models provide promising results with a minimum overall regression value of 0.92.
    Matched MeSH terms: Rivers
  9. Reis PCJ, Ruiz-González C, Crevecoeur S, Soued C, Prairie YT
    Sci Total Environ, 2020 Dec 15;748:141374.
    PMID: 32823225 DOI: 10.1016/j.scitotenv.2020.141374
    Methane-oxidizing bacteria (MOB) present in the water column mitigate methane (CH4) emissions from hydropower complexes to the atmosphere. By creating a discontinuity in rivers, dams cause large environmental variations, including in CH4 and oxygen concentrations, between upstream, reservoir, and downstream segments. Although highest freshwater methanotrophic activity is often detected at low oxygen concentrations, CH4 oxidation in well-oxygenated downstream rivers below dams has also been reported. Here we combined DNA and RNA high-throughput sequencing with microscopic enumeration (by CARD-FISH) and biogeochemical data to investigate the abundance, composition, and potential activity of MOB taxa from upstream to downstream waters in the tropical hydropower complex Batang Ai (Malaysia). High relative abundance of MOB (up to 61% in 16S rRNA sequences and 19% in cell counts) and enrichment of stable isotopic signatures of CH4 (up to 0‰) were detected in the hypoxic hypolimnion of the reservoir and in the outflowing downstream river. MOB community shifts along the river-reservoir system reflected environmental sorting of taxa and an interrupted hydrologic connectivity in which downstream MOB communities resembled reservoir's hypolimnetic communities but differed from upstream and surface reservoir communities. In downstream waters, CH4 oxidation was accompanied by fast cell growth of particular MOB taxa. Our results suggest that rapid shifts in active MOB communities allow the mitigation of CH4 emissions from different zones of hydropower complexes, including in quickly re-oxygenated rivers downstream of dams.
    Matched MeSH terms: Rivers
  10. Shehab ZN, Jamil NR, Aris AZ
    J Environ Manage, 2020 Nov 15;274:111141.
    PMID: 32818827 DOI: 10.1016/j.jenvman.2020.111141
    A simplified modelling approach for illustrating the fate of emerging pollutants can improve risk assessment of these chemicals. Once released into aquatic environments, these pollutants will interact with various substances including suspended particles, colloidal or nano particles, which will greatly influence their distribution and ultimate fate. Understanding these interactions in aquatic environments continues to be an important issue because of their possible risk. In this study, bisphenol A (BPA) in the water column of Bentong River, Malaysia, was investigated in both its soluble and colloidal phase. A spatially explicit hydrological model was established to illustrate the associated dispersion processes of colloidal-bound BPA. Modelling results demonstrated the significance of spatial detail in predicting hot spots or peak concentrations of colloidal-bound BPA in the sediment and water columns as well. The magnitude and setting of such spots were system based and depended mainly on flow conditions. The results highlighted the effects of colloidal particles' concentration and density on BPA's removal from the water column. It also demonstrated the tendency of colloidal particles to aggregate and the impact all these processes had on BPA's transport potential and fate in a river water. All scenarios showed that after 7.5-10 km mark BPA's concentration started to reach a steady state with very low concentrations which indicated that a downstream transport of colloidal-bound BPA was less likely due to minute BPA levels.
    Matched MeSH terms: Rivers
  11. Ahmed MF, Lim CK, Mokhtar MB, Khirotdin RPK
    PMID: 34360286 DOI: 10.3390/ijerph18157997
    Chemical pollution in the transboundary Langat River in Malaysia is common both from point and non-point sources. Therefore, the water treatment plants (WTPS) at the Langat River Basin have experienced frequent shutdown incidents. However, the Langat River is one of the main sources of drinking water to almost one-third of the population in Selangor state. Meanwhile, several studies have reported a high concentration of Arsenic (As) in the Langat River that is toxic if ingested via drinking water. However, this is a pioneer study that predicts the As concentration in the Langat River based on time-series data from 2005-2014 to estimate the health risk associated with As ingestion via drinking water at the Langat River Basin. Several time-series prediction models were tested and Gradient Boosted Tree (GBT) gained the best result. This GBT model also fits better to predict the As concentration until December 2024. The mean concentration of As in the Langat River for both 2014 and 2024, as well as the carcinogenic and non-carcinogenic health risks of As ingestion via drinking water, were within the drinking water quality standards proposed by the World Health Organization and Ministry of Health Malaysia. However, the ingestion of trace amounts of As over a long period might be detrimental to human health because of its non-biodegradable characteristics. Therefore, it is important to manage the drinking water sources to minimise As exposure risks to human health.
    Matched MeSH terms: Rivers
  12. Shah AS, Hashim ZH, Sah SA
    Trop Life Sci Res, 2009 Dec;20(2):59-70.
    PMID: 24575179 MyJurnal
    A total of 37 fish species from 14 families were observed during surveys conducted from January to March 2005 at 8 selected streams near the Gunung Jerai Forest Reserve. The list includes two species (Rasbora trilineata and Systomus partipentazona) that were visually identified at the lower part of the Sungai Teroi stream. Single specimens of Leiocassis micropogon, Clarias macrocephalus and Hampala macrolepidota were also obtained at certain sampling stations. Devario regina and Systomus binotatus were the most abundant species at all sampling stations. However, the list is still incomplete as the study was carried out over a short time period and there are large areas that have not yet been surveyed. The presence of exotic species (Carassius auratus) at Sungai Badak indicates anthropogenic influences. Therefore, a long-term monitoring program for Gunung Jerai Forest Reserve streams should be planned and carried out to assess the impacts of future development on fish biodiversity and water quality.
    Matched MeSH terms: Rivers
  13. Ab Hamid S, Md Rawi CS
    Trop Life Sci Res, 2017 Jul;28(2):143-162.
    PMID: 28890767 MyJurnal DOI: 10.21315/tlsr2017.28.2.11
    The Ephemeroptera, Plecoptera and Trichoptera (EPT) community structure and the specific sensitivity of certain EPT genera were found to be influenced by water parameters in the rivers of Gunung Jerai Forest Reserve (GJFR) in the north of peninsular Malaysia. The scores of EPT taxa richness of >10 in all rivers indicated all rivers' habitats were non-impacted, having good water quality coinciding with Class I and Class II of Malaysian water quality index (WQI) classification of potable water. The abundance of EPT was very high in Teroi River (9,661 individuals) but diversity was lower (22 genera) than Tupah River which was highly diverse (28 genera) but lower in abundance (4,263 individuals). The lowest abundance and moderate diversity was recorded from Batu Hampar River (25 genera). Baetis spp. and Thalerosphyrus spp., Neoperla spp. and Cheumatopsyche spp. were the most common genera found. Classification for all rivers using EPT taxa Richness Index and WQI gave different category of water quality, respectively. The WQI classified Tupah and Batu Hampar rivers into Class II and Teroi River (Class I) was two classes above the classification of the EPT taxa Richness Index.
    Matched MeSH terms: Rivers
  14. Jumaat AH, Hamid SA
    Trop Life Sci Res, 2021 Mar;32(1):91-105.
    PMID: 33936553 DOI: 10.21315/tlsr2021.32.1.6
    Abundance and distribution of aquatic insects respecting to several water chemical parameters from six rivers were studied in order to determine the performance of biological index in monitoring the water quality. A total of 960 individuals of aquatic insects from nine orders were recorded using kick and drag sampling techniques. Lubok Semilang had the greatest number of aquatic insects with 250 individuals, followed by Telaga Tujuh (181 individuals) and Sungai Durian Perangin (171 individuals). EPT (Ephemeroptera, Plecoptera and Trichoptera) order were the most dominant order recorded in all six rivers. Lata Kekabu had more diverse and richer aquatic insect assemblages based on ecological indices compared to the other five rivers. In order to evaluate the water quality of recreational rivers in Malaysia, Family Biotic Index (FBI), Malaysian Family Biotic Index (MFBI) and Biological Monitoring Working Party (BMWP) were used and compared with Water Quality Index (WQI) to determine the water quality at the study areas. Results demonstrated that the biotic indices were more sensitive towards changes in water parameters than the WQI. Among all the biological indices, MFBI was the most suitable index to be adopted in Malaysian river water assessment as it is more reliable in assessing the status of water quality.
    Matched MeSH terms: Rivers
  15. Hamli H, Hamed NA, Azmai SHS, Idris MH
    Trop Life Sci Res, 2020 Jul;31(2):145-158.
    PMID: 32922672 DOI: 10.21315/tlsr2020.31.2.7
    Pachychilidae is one of the freshwater gastropod family which was previously known under the Potamididae and Thiaridae families. Studies on freshwater gastropods especially on conchcology examinantions are still inadequate compared to marine gastropods. Morphological and morphometric studies of gastropods are practically used to identify and differentiate between species and necessary to complement molecular studies due to its low cost and tolerable resolving power of discrimination. The aim of the current study is to provide information on morphological and morphometric characteristics of Pachychilidae in Bintulu, Sarawak stream. A total of 20 individuals from each species of Sulcospira testudinaria, Sulcospira schmidti, Brotia siamensis, and Tylomelania sp. from Pachychilidae familiy were collected at three different sites from a small stream within the Bintulu area. Fourteen measurement of shell morphometrics were converted into proportioned ratios and analysed for univariate and multivariate analysis. Three shell morphometric (Aperture width, AW; Whorl width, WW2; and, Interior anterior length, AINL) of Pachychilidae indicated significant differences (P < 0.05) between species. However, multivariate analysis revealed that these shell morphometrics are pre-eminent factors to discriminate genus Sulcospira, Brotia and Tylomelania, as well as between Sulcospira species. This current study also suggests that these three characteristics are unique to Sulcospira species due to strong distinction among species. Findings on these three characteristics are significant for Sulcospira spp. as this study is the first shell morphometric report on the Pachychilidae species in Sarawak.
    Matched MeSH terms: Rivers
  16. Sinha, P.C., Jena, G.K., Rao, A.D., Mohd Lokman Husain, Jain, Indu
    MyJurnal
    A depth-averaged numerical model was developed to study tidal circulation and suspended sediment transport in the gulf of Khambhat along the west coast of India. The spatial resolution of the model is 750m x 750m. A 2-D fine resolution (150 m x 150 m) model for the lower part of the Narmada estuary is coupled with the coarser gulf model to simulate the flow features in the lower estuary. The model dynamics and basic formulation remain the same for both the gulf model and the estuary model. The models are barotropic, based on the shallow water equations and neglect horizontal diffusion and wind stress terms in the momentum equations. The models are fully non-linear and use a semi-explicit finite difference scheme to solve mass, momentum, and advection- diffusion equation for suspended sediments in a horizontal plane. The erosion and deposition have been computed by an empirically developed source and sink term in the suspended sediment equation. The tide in the gulf is mainly represented in the model by the semi-diurnal M2 constituent. Meanwhile, fresh water discharge from the rivers joining the gulf had also been considered. Numerical experiments were carried out to study the circulation and suspended sediment concentrations in the gulf and estuarine region.
    Matched MeSH terms: Rivers
  17. Abdul-Kadir, M.A., Ariffin, J.
    ASM Science Journal, 2012;6(2):128-137.
    MyJurnal
    This paper reviews the advances made on studies related to bank erosion. Bank erosion has been an area of interest by researchers in geological, geotechnical, hydraulic, hydrology and river engineering disciplines. With anticipated global challenges from climate change impacts, bank erosion studies could support challenges faced in ensuring sustainable environmental management. The evolution in the theoretical and laboratory findings have led to the advances in bank erosion and contributed to new knowledge in the said field. This review summarises the findings of previous investigators including measurements approach and prediction of rates of bank erosion through the use of physical models and numerical approach.
    Matched MeSH terms: Rivers
  18. Md Suhaimi Elias, Mohd Suhaimi Hamzah, Mohd Suhaimi Hamzah, Siong, Wee Boon, Nazaratul Ashifa Abdullah Salim
    MyJurnal
    Assessment of source and sediment quality was carried out on marine sediments collected from the Tuanku Abdul Rahman National Park. Enrichment factors (EF), pollution load index (PLI) and geo-accumulation index (Igeo) were used to identify the sources of pollution, degree of contamination and sediment quality, respectively. Elemental analyses of marine sediment samples were performed by using the Instrumental Neutron Activation Analysis (INAA). Results from the Tunku Abdul Rahman National Park of Sabah indicated that most of the elements are considered to be from lithological or natural origin with EF values of less than 2 except for As (10 stations), Cr (3 stations), Lu (5 stations), Mg (2 stations), Sb (6 stations) and U (3 stations). For the sediment quality, most of the study area can be categorised as unpolluted for most of the elements (Igeo value < 2) except for As, Cr, Lu, Mg, Sb and U. A few study areas were slightly low contaminated with As, Cr, Lu, Mg, Sb and U. The contamination of As, Cr, Lu, Mg, Sb and U in the study area can be categorised as moderate with Igeo values ranged from 1 to 2. Meanwhile, the results of PLI value for sediment were ranged from 0.93 to 1.47 (PLI < 50) indicating there are not required to perform drastic rectification measures for the screening of the elements in the Tunku Abdul Rahman Park. Overall, assessment of the sediment quality at the Tunku Abdul Rahman National Park showed a few elements such as As, Cr, Lu, Mg, Sb and U were slightly enriched while most of the elements were similar to background values.
    Matched MeSH terms: Rivers
  19. Wee, Siaw Khur, Chok, Vui Soon, Gorin, Alexander, Chua, Han Bing, Yan, Hong Ming
    MyJurnal
    Compartmented Fluidized Bed Gasifier (CFBG), consisting of two compartments - the combustorand gasifier, uses air blown instead of pure oxygen for syngas production in bubbling fluidization mode, eliminating the need of air separation unit, and reducing the capital cost, thus distinguishes it from other traditional ones. Fluidization quality is a determining factor in the CFBG to guarantee its well-lifted behaviour. Previous study, without solid circulation at ambient conditions, brought to the fore the necessity of considering the effect of the minimum allowable effective diameter. The study was then performed in the CFBG cold physical model of 0.66m overall diameter (effective diameter for combustor and gasifier is 0.413m and 0.257m) to investigate the fluidization quality and compare it with the results obtained from the previous cold model of about 1.36 times smaller, but with the same compartmented ratio of 65:35. Different inert particles (river sand, quartz sand and alumina) were used, over a range of aspect ratios, for the aforementioned objective. The results showed that the fluidization quality in the gasifier has not been achieved and the degradation of fluidization quality in the combustor is still observed, notwithstanding the fact that the condition of the minimum allowable effective diameter has been met. The reduction of distributor free area, to increase the distributor pressure drop, showed a marginal effect on the quality. The effect of the minimum allowable effective diameter on fluidization quality in CFBG as well as the interplay of geometric and operational parameters require further studies be carried out. The fluidization quality of the binary mixture is also currently under investigation.
    Matched MeSH terms: Rivers
  20. Md Rowshon Kamal, Mohd Amin Mohd Soom, Abdul Rashid Mohamed Shariff
    MyJurnal
    A GIS-based user-interface programme was developed to compute the geospatial Water ProductivityIndex (WPI) of a river-fed rice irrigation scheme in Northwest Selangor, Malaysia. The spatial analysisincludes irrigation blocks with sizes ranging from 20 to 300 ha. The amount of daily water use for eachirrigation block was determined using irrigation delivery model and stored in the database for both mainseason (August to December) and off season (February to May). After cut-off of the irrigation supply,a sub-module was used to compute the total water use including rainfall for each irrigation block. Therice yield data for both seasons were obtained from DOA (Department of Agriculture, Malaysia) of thescheme. Then, the Water Productivity Index (WPI) was computed for each irrigation block and spatialthematic map was also generated. ArcObjects and Visual Basic Application (VBA) programminglanguages were used to structure user-interface in the ArcGIS software. The WPI, expressed in termsof crop yield per unit amount of water used (irrigation and effective rainfall), ranged from 0.02 to 0.57kg/m3 in the main season and 0.02 to 0.40 in off season among irrigation blocks, respectively. Thedevelopment of the overall system and the procedure are illustrated using the data obtained from thestudy area. The approach could be used to depict the gaps between the existing and appropriate watermanagement practices. Suitable interventions could be made to fill the gaps and enhance water useefficiency at the field level and also help in saving irrigation water through remedial measures in theseason. The approach could be useful for irrigation managers to rectify and enhance decision-makingin both the management and operation of the next irrigation season.
    Matched MeSH terms: Rivers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links