OBJECTIVE: A new variant of the equine fsh (efsh) gene was cloned, sequenced, and expressed in Pichia pastoris (P. pastoris) GS115 yeast expression system.
MATERIALS AND METHODS: The full-length cDNAs of the efshα and efshβ chains were amplified by reverse transcription polymerase chain reaction (RT-PCR) using the total RNA isolated from an Iranian Turkmen-thoroughbred horse's anterior pituitary gland. The amplified efsh chains were cloned into the pPIC9 vector and transferred into P. pastoris. The secretion of recombined eFSH using P. pastoris expression system was confirmed by Western blotting and immunoprecipitation (IP) methods.
RESULTS: The DNA sequence of the efshβ chain accession number JX861871, predicted two putative differential nucleotide arrays, both of which are located in the 3'UTR. Western blotting showed a molecular mass of 13 and 18 kDa for eFSHα and eFSHβ subunits, respectively. The expression of desired protein was confirmed by protein G immunoprecipitation kit.
CONCLUSIONS: eFSH successfully expressed in P. pastoris. These findings lay a foundation to improve ovulation and embryo recovery rates as well as the efficiency of total embryo-transfer process in mares.
RESULTS: Yeast two-hybrid (Y2H) experiment was used to identify the binding partners of surface antigens of T. gondii by using SAG2 as bait. Colony PCR was performed and positive clones were sent for sequencing to confirm their identity. The yeast plasmids for true positive clones were rescued by transformation into E. coli TOP 10F' cells. The interplay between bait and prey was confirmed by β-galactosidase assay and co-immunoprecipitation experiment. We detected 20 clones interacting with SAG2 based on a series of the selection procedures. Following the autoactivation and toxicity tests, SAG2 was proven to be a suitable candidate as a bait. Thirteen clones were further examined by small scale Y2H experiment. The results indicated that a strong interaction existed between Homo sapiens zinc finger protein and SAG2, which could activate the expressions of the reporter genes in diploid yeast. Co-immunoprecipitation experiment result indicated the binding between this prey and SAG2 protein was significant (Mann-Whitney U-test: Z = -1.964, P = 0.05).
CONCLUSIONS: Homo sapiens zinc finger protein was found to interact with SAG2. To improve the understanding of this prey protein's function, advanced investigations need to be carried out.
RESULTS: Pineapple juice vinegar, which had the highest total phenolic acid content, also exhibited the greatest in vitro antioxidant capacity compared to coconut juice and nipah juice vinegars. Following acute and sub-chronic in vivo toxicity evaluation, no toxicity and mortality were evident and there were no significant differences in the serum biochemical profiles between mice administered the vinegars versus the control group. In the sub-chronic toxicity evaluation, the highest liver antioxidant levels were found in mice fed with pineapple juice vinegar, followed by coconut juice and nipah juice vinegars. However, compared to the pineapple juice and nipah juice vinegars, the mice fed with coconut juice vinegar, exhibited a higher population of CD4+ and CD8+ T-lymphocytes in the spleen, which was associated with greater levels of serum interleukin-2 and interferon-γ cytokines.
CONCLUSIONS: Overall, the data suggested that not all vinegar samples cause acute and sub-chronic toxicity in vivo. Moreover, the in vivo immunity and organ antioxidant levels were enhanced, to varying extents, by the phenolic acids present in the vinegars. The results obtained in this study provide appropriate guidelines for further in vivo bioactivity studies and pre-clinical assessments of vinegar consumption. © 2017 Society of Chemical Industry.
AIM OF THE STUDY: The present study aimed to characterize the chemical properties of a purified polysaccharide extracted from the aerial part of Tetrastigma hemsleyanum (SYQP) and investigate its antipyretic and antitumor effects in mice models.
MATERIALS AND METHODS: Water-soluble crude polysaccharides from the aerial parts of Tetrastigma hemsleyanum were extracted and fractionated by DEAE and gel permeation chromatography. Homogeneity, molecular weight, monosaccharide composition, and FTIR analysis were performed to characterize the SYQP. Antipyretic effect of SYQP was examined using Brewer's yeast induced hyperthermia test. Antitumor effect was investigated using H22 tumor bearing mice. The serum cytokines were determined to evaluated the biological activities of SYQP.
RESULTS: SYQP was composed of galacturonic acid (GalA), glucose (Glc), mannose (Man), arabinose (Ara), galactose (Gal), and rhamnose (Rha) with a molar ratio of 11.3:7.1:2.5:1.0:0.9:0.5 and it had an average molecular weight of 66.2 kDa. The oral administration of SYQP at 200 and 400 mg/kg could markedly suppress the hyperthermia of mice induced by Brewer's yeast and decrease the production of cytokines especially prostaglandin E2 (PGE2) in the serum of mice. SYQP inhibited the growth of H22 tumor in mice with inhibitory rate of 39.9% at the administration dose of 200 mg/kg and increased the production of cytokines such as tumor necrosis factor-alpha (TNF-a) and interferon γ (IFN-γ). Experimental results showed that the preventive administration of SYQP before lipopolysaccharide (LPS) reduced the high cytokine levels such as IL-6, IL-10 and IFN-γ, indicating that SYQP might act as a competitor with LPS to interact with toll like receptor 4 (TLR4), which further regulated the secretion of cytokines.
CONCLUSION: The anti-inflammatory and antitumor activities of SYQP might be related to its regulation of host immune function by controlling the secretion of cytokines.