Displaying publications 161 - 180 of 422 in total

Abstract:
Sort:
  1. Chilakamarry CR, Mahmood S, Saffe SNBM, Arifin MAB, Gupta A, Sikkandar MY, et al.
    3 Biotech, 2021 May;11(5):220.
    PMID: 33968565 DOI: 10.1007/s13205-021-02734-7
    Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.
    Matched MeSH terms: Solubility
  2. Mardianingrum R, Yusuf M, Hariono M, Mohd Gazzali A, Muchtaridi M
    J Biomol Struct Dyn, 2020 Nov 06.
    PMID: 33155528 DOI: 10.1080/07391102.2020.1841031
    Estrogen receptor alpha (ERα) acts as the transcription factor and the main therapeutic target against breast cancer. One of the compounds that has been shown to act as an ERα is α-mangostin. However, it still has weaknesses due to its low solubility and low potent activity. In this study, α-mangostin was modified by substituting -OH group at C6 using benzoyl derivatives through a step by step in silico study, namely pharmacokinetic prediction (https://preadmet.bmdrc.kr/adme/), pharmacophore modeling (LigandScout 4.1), molecular docking simulation (AutoDock 4.2), molecular dynamics simulation (AMBER 16) and a binding free energy analysis using MM-PBSA method. From the computational studies, three compounds which are derived from α-mangostin (AMB-1 (-9.84 kcal/mol), AMB-2 (-6.80 kcal/mol) and AMB-10 (-12.42 kcal/mol)) have lower binding free energy than α-mangostin (-1.77 kcal/mol), as evidenced by the binding free energy calculation using the MM-PBSA method. They can then be predicted to have potent activities as ERα antagonists.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Solubility
  3. Khursheed R, Singh SK, Gulati M, Wadhwa S, Kapoor B, Pandey NK, et al.
    Int J Biol Macromol, 2021 Jul 31;183:1630-1639.
    PMID: 34015408 DOI: 10.1016/j.ijbiomac.2021.05.064
    Ganoderma lucidium extract powder (GLEP) contains various polysaccharides which are well known for their antioxidant and anti-inflammatory actions. Probiotics (PB) are well-established for providing a plethora of health benefits. Hence, use of mushroom polysaccharides and probiotics as carriers to solidify liquisolid formulation is anticipated to function as functional excipients i.e. as adsorbent that may provide therapeutic benefits. Quercetin (QUR) has been used as model lipophilic drug in this study. QUR loaded liquisolid compacts (LSCs) were formulated using Tween 80 as solvent. These were further solidified using a combination of PB and GLEP as carriers. Aerosil-200 (A-200) was used as coating agent. The formulation exhibited very good flow characteristics. Dissolution rate of raw QUR was found to be less than 10% in 60 min while in case of QUR loaded LSCs, more than 90% drug release was observed within 5 min. Absence of crystalline peaks of QUR in the DSC and PXRD reports of LSCs and their porous appearance in SEM micrographs indicate that QUR was successfully incorporated in the LSCs. The developed formulation was found to be stable on storage under accelerated stability conditions.
    Matched MeSH terms: Solubility
  4. Razali S, Bose A, Chong PW, Benetti C, Colombo P, Wong TW
    Int J Pharm, 2020 Sep 25;587:119618.
    PMID: 32673769 DOI: 10.1016/j.ijpharm.2020.119618
    Multi-particulate Dome matrix with sustained-release melatonin and delayed-release caffeine was designed to restore jet lag sleep-wake cycle. The polymeric pellets were produced using extrusion-spheronization technique and fluid-bed coated when applicable. The compact and Dome module were produced by compressing pellets with cushioning agent. Dome matrix was assembly of modules with pre-determined compact formulation and drug release characteristics. The physicochemical and in vivo pharmacokinetics of delivery systems were examined. Melatonin loaded alginate/chitosan-less matrix exhibited full drug release within 8 h gastrointestinal transit with low viscosity hydroxypropymethylcellulose as cushioning agent. The cushioning agent reduced burst drug release and omission of alginate-chitosan enabled full drug release. Delayed-release alginate-chitosan caffeine matrix was not attainable through polymer coating due to premature coat detachment. Admixing of cushioning agent high viscosity hydroxypropylmethylcellulose and high viscosity ethylcellulose (9:1 wt ratio) with coat-free caffeine loaded particulates introduced delayed-release response via hydroxypropylmethylcellulose swelled in early dissolution phase and ethylcellulose sustained matrix hydrophobicity at prolonged phase. The caffeine was released substantially in colonic fluid in response to matrix polymers being degraded by rat colonic content. Dome matrix with dual drug release kinetics and modulated pharmacokinetics is produced to introduce melatonin-induced sleep phase then caffeine-stimulated wake phase.
    Matched MeSH terms: Solubility
  5. Saad B, Zin ZM, Jab MS, Rahman IA, Saleh MI, Mahsufi S
    Anal Sci, 2005 May;21(5):521-4.
    PMID: 15913140
    Poly (vinyl chloride) membrane electrodes that responded selectively towards the antimalarial drug chloroquine are described. The electrodes were based on the use of the lipophilic potassium tetrakis(4-chlorophenyl)borate as ion-exchanger and bis(2-ethylhexyl)adipate (BEHA), or trioctylphosphate (TOP) or dioctylphenylphosphonate (DOPP) as plasticizing solvent mediator. All electrodes produced good quality characteristics such as Nernstian- and rapid responses, and are minimally interfered with by the alkali and alkaline earth metal ions tested. The membranes were next applied to a flow-through device, enabling it to function as flow-injection analysis (FIA) detector. The performance of the sensor after undergoing the FIA optimization was further evaluated for its selectivity characteristics and lifetime. Results for the determination of chloroquine in synthetic samples that contained common tablet excipients such as glucose, starch, and cellulose, and other foreign species such as cations, citric acid or lactic acid were generally satisfactory. The sensor was also successfully used for the determination of the active ingredients in mock tablets, synthetic fluids and biological fluids. The sensor was applied for the determination of active ingredients and the dissolution profile of commercial tablets was also established.
    Matched MeSH terms: Solubility
  6. Samira, S., Thuan-Chew Tan, T.C., Azhar, M.E.
    MyJurnal
    The effect of ribose-induced Maillard reaction on the physical and mechanical properties of gelatin films was investigated. Bovine gelatin solution (5 g/100 mL) containing glycerol and sorbitol (1:1) was mixed with 20% (R20), 40% ribose (R40), or 40% sucrose (S40) (weight % is based on gelatin dry weight) followed by heating (90ºC, 2 h) and oven drying to produce dried gelatin films. R20 and R40 films were brownish in color with lower light transparency, while CF (control film; without sugars) and S40 were colorless and had higher transparency. Tensile strength and Young Modulus values of the films were in the order; CF > R20 > R40 > S40, while elongation at break was in the order; R40 > S40 > R20 > CF. Water solubility and swelling percentages of the films were in the order; CF > S40 > R20 > R40, indicating the occurrence of insoluble “Maillard complexes” within R20 and R40 films. R20 and R40 films showed maximum light absorption at wavelength of 200 − 350 nm, whilst S40 and CF showed maximum absorbance at 200 − 250 nm. The addition of ribose yielded gelatin films with increased protection against UV light, even though the presence of sugars might had disrupted the inter connection of junction zones and decrease in mechanical properties. Occurrence of the Maillard reaction within R20 and R40 films could be the main reason for differences in physical and mechanical properties of films containing ribose that were formed from heated film-forming solutions.
    Matched MeSH terms: Solubility
  7. Kuan YH, Nafchi AM, Huda N, Ariffin F, Karim AA
    J Sci Food Agric, 2017 Mar;97(5):1663-1671.
    PMID: 27465360 DOI: 10.1002/jsfa.7970
    BACKGROUND: Previous studies have indicated that duck feet are a rich source of gelatin extractable from avian sources. In this study, the physicochemical and functional properties of avian gelatin extracted from duck feet (DFG) with acetic acid were compared with those of commercial bovine gelatin (BG).

    RESULTS: The yield of DFG obtained in this study was 7.01 ± 0.31%. High-performance liquid chromatography analysis indicated that the imino acid content was slightly lower for DFG compared with BG (P < 0.05). Differences in molecular size and amino acids between DFG and BG were also observed. The isoelectric points of DFG and BG were at pH 8 and 5 respectively, and the overall protein solubility of BG was higher than that of DFG. Gels prepared from BG exhibited higher bloom strength, viscosity and clarity and were darker in colour compared with DFG gels (P < 0.05). The gelling and melting points of BG were 21.8 and 29.47 °C respectively, while those of DFG were 20.5 and 27.8 °C respectively. BG exhibited slightly better emulsifying and foaming properties compared with DFG.

    CONCLUSION: Although some differences between DFG and BG were observed, the disparities were small, which indicates that DFG could be exploited commercially as an alternative source of gelatin. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Solubility
  8. Normah, I., Nur Anati, J.
    MyJurnal
    Threadfin bream (Nemipterus japonicas) muscle was hydrolysed using protease extracted from
    bilimbi (Averrhoa bilimbi L.) fruit. This study was performed in order to compare the efficiency of bilimbi protease in producing threadfin bream protein hydrolysate with the commercial protease; alcalase 2.4 L. Initially, protease was extracted and then purified using 40% ammonium sulfate precipitation method. The proteolytic activity of the crude extract and purified protease was determined. Precipitation using 40% ammonium sulfate resulted in bilimbi protease specific activity of 2.36 U/mg and 23.13% recovery. Threadfin bream hydrolysate was prepared based on the pH-stat method by hydrolysis for 2 hrs. Hydrolysis using bilimbi protease produced 34.76% degree of hydrolysis (DH) and 3.75% yield while hydrolysis using alcalase resulted in 86.6% DH with 22.78% yield. Alcalase hydrolysate showed higher solubility than bilimbi protease hydrolysate at pH 7 with 70.87 and 32.16% solubility, respectively. Results also showed that protein content of threadfin bream hydrolysate produced using alcalase was higher (86.86%) than those produced using bilimbi protease (22.12%). However, both hydrolysates showed low moisture content between 3.93 to 7.00%. The molecular weight distribution analysis using SDS–PAGE indicated the distribution of smaller peptides especially in alcalase hydrolysate. Overall, the results showed that alcalase is more efficient enzyme choice than bilimbi protease for preparing threadfin bream hydrolysates. However, both hydrolysates could play an important role thus contribute to the food industry.
    Matched MeSH terms: Solubility
  9. Noranizan, M.A., Dzulkifly, M.H., Russly, A.R.
    MyJurnal
    Changes in the physicochemical properties of wheat, sago, tapioca and potato starches were studied
    after heating for 1 hour at 100oC, 110oC, and 120oC and for 2 hours at 120oC. These properties were characterised through the swelling behaviour of starch granules, amount of carbohydrate materials leached from the granules, starch paste retrogradation rate and gel strength. For all starches except wheat, the swelling ability, rate of retrogradation and gel strength decreased while solubility increased with increasing temperature and heating time. Wheat starch followed this pattern only when heated at 120oC for 1 and 2 hours. Gel strength correlated well with the ratio of amylose to amylopectin (R) in the leachate. To produce fried crackers with good expansion properties, the granule has to be sufficiently degraded so as to allow more amylopectin to be leached out to achieve R value of 0.25-0.5. This can be achieved by heating wheat starch at 120oC for 1 hour or longer.
    Matched MeSH terms: Solubility
  10. Ng, K. F., Abbas, F. M. A., Tan, T. C., Azhar, M. E.
    MyJurnal
    Proximate composition, pH and amylose content of ripe Cavendish banana flour (RBF) prepared in this study were compared with all-purpose wheat flour (WF). RBF was found to be significantly (P < 0.05) higher in total carbohydrates and minerals content, while significantly (P < 0.05) lower in protein and fat contents compared with those of WF. Wheat-ripe banana composite flours (W-RBF) prepared by partial substitution of WF with RBF were assessed for swelling power, solubility, pasting properties and gel textural properties. Granular swelling of RBF occurred at a higher temperature compared to that of WF, suggesting that more energy and water were required to cook WF-RBF as the presence of soluble carbohydrates would compete for water and this would eventually delay starch hydration and granular expansion during cooking. Higher substitution with RBF led to higher soluble carbohydrates content, and increase in solubility index of WF-RBF. Partial substitution with RBF also resulted in significant (P < 0.05) decrease in pasting properties. A higher substitution of WF with RBF could reduce starch gelatinisation during cooking and retrogradation owing to the reduction of available starch in WF-RBF. All WF-RBF gels were significantly (P < 0.05) firmer and less sticky compared to WF gels.
    Matched MeSH terms: Solubility
  11. Amiza, M.A., Ow, Y.W., Faazaz, A.L.
    MyJurnal
    The physicochemical properties of silver catfish frame hydrolysate powder at three different degree of hydrolysis, DH43%, DH 55% and DH 68% were studied. The hydrolysates powder were obtained by hydrolysis using Alcalase®, centrifugation and spray drying of the supernatant. The study found that preparation of these hydrolysates affected the protein, ash and fat content as well as amino acid composition. As for essential amino acids, their values were generally considered as adequate as compared to the suggested essential amino acids profile of FAO/WHO. The results showed that SFHs were rich in lysine and glutamate. Hydrolysate at DH 68% exhibited better peptide solubility and water holding capacity. As degree of hydrolysis increased, emulsifying capacity and foaming capacity of the hydrolysate decreased. It was also found that the lightness in hydrolysate powder decreased with increase in degree of hydrolysis. This study shows that silver catfish frame hydrolysate has good solubility, good foaming properties and light colour profile, thus having high potential as food ingredient.
    Matched MeSH terms: Solubility
  12. Sa'don NA, Rahim AA, Hussin MH
    Int J Biol Macromol, 2017 May;98:701-708.
    PMID: 28174085 DOI: 10.1016/j.ijbiomac.2017.01.137
    This article reports on the structural characteristics and antioxidant activity of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) extracted from oil palm fronds (OPF) and modified autohydrolyzed ethanol organosolv lignin via incorporation of p-nitrophenol (AHNP EOL). The isolated lignin were analyzed by FTIR, (1)H and (13)C NMR spectroscopy, 2D NMR; HSQC and HMBC, CHN analysis, molecular weight distribution using GPC analyzer, thermal analysis; TGA and DSC. The chemical modification by utilizing an organic scavenger during delignification process provided smaller lignin fragments and enhanced the solubility of lignin by reducing its hydrophobicity properties. It was revealed that the antioxidant properties increased as compared to the unmodified organosolv lignin. Additionally, the modified lignin has better solubility in water (DAHNP EOL=35%>DAH EOL=25%).
    Matched MeSH terms: Solubility
  13. Venkateskumar Krishnamoorthy, Verma Priya Ranjan Prasad, Suchandrasen Sen
    MyJurnal
    exhibits extensive first pass metabolism with poor oral bioavailability (27%–50%) limiting its therapeutic efficiency. The present study involved an attempt to enhance its aqueous solubility by formulating as solid dispersions (SDs) using sodium starch glycollate (SSG) as a carrier. The dispersions were formulated by dispersion method and evaluated by phase solubility, drug content, in vitro release and mathematical modelling. Solid state characterisation of samples was carried out by X-ray diffraction (XRD), differential scanning calorimetric (DSC), Fourier transform infrared spectrophotometry (FTIR), near infrared (NIR), Raman analysis and wettability studies. The phase solubility and thermodynamic parameters indicated the spontaneity and solubilisation effect of carrier. The release rate from the dispersions was higher than pure drug and found to increase with an increase in carrier content. The optimised dispersions were selected based on release studies, profiles and dissolution parameters. XRD, DSC, FTIR, NIR and Raman analysis proved the crystallinity reduction, changes in crystal quality and compatibility between drug and carriers. Wettability studies proved the increased wettability in selected dispersions. Based on the findings, possible mechanisms that would have contributed to dissolution enhancement of CLZ were suggested. Such findings could be extrapolated to enhance the aqueous solubility of other poorly water-soluble drugs.
    Matched MeSH terms: Solubility
  14. Amin, M.C.I., Soom, R.M., Ahmad, I., Lian, H.H.
    MyJurnal
    This study was carried out to determine the physicochemical properties of carboxymethyl cellulose (CMC) derived from cellulose of palm oil empty fruit bunch (EFB) and its use asa film-coating agent. Samples were prepared at various concentrations and then their physicochemical properties were studied including the viscosity, pH, tensile strength of films, surface properties of the films and dissolution studies on coated tablets. CMC EFB showed lower viscosity than commercial CMC product at the concentration of 1%, 2% and 3% with the values of 44.0cp, 299.9cp, 358.9cp and 90.0cp, 689.9cp, 5569.0cp respectively. The tensile strength of the films for CMC EFB were 7.85MPa, 14.79MPa, 10.36MPa while the commercial CMC exhibited higher values of 21.72MPa, 35.14MPa and 26.9MPa at similar concentration. The scanning electron microscope showed different surface properties of the films for both of them where the commercial CMC is smoother in texture and very transparent unlike its counterpart. However, dissolution studies on paracetamol tablets coated using the samples showed no significant difference (p>0.05) in drug release profile between the two materials. Hence, CMC EFB has a greater potential to be developed as a competitive tablet-coating agent despite the differences in its physicochemical properties.
    Matched MeSH terms: Solubility
  15. Normah Ismail, Najihah Shukor, Zainal Samicho
    MyJurnal
    Silver catfish (Pangasius sutchi) skin gelatin was extracted to determine the effects of extraction time on the functional properties of the gelatin in terms of solubility, protein solubility as a function of pH and sodium chloride concentration, emulsifying capacity and stability, water holding capacity, fat binding capacities and foaming properties. Silver catfish skins were washed in sodium chloride (NaCl) solution prior to pre-treatment in sodium hydroxide (NaOH) and acetic acid solution. Gelatin was extracted at 50ºC for 6, 8, 10 and 12 hours extraction time followed by freeze drying. The extraction of silver catfish skin gelatin at 50 ºC for 12 hours was more effective than extraction at 6, 8 and 10 hours where the gelatin was characterized by higher emulsifying capacity (52.63%), emulsifying stability (47.83%), water holding capacity (31.78 mL/g), fat binding capacities (54.76%), foaming capacity (41.47 mL) and foaming stability (56.42%) than gelatins extracted at other extraction time. The longer the extraction time, the better the functional properties of the gelatin. Based on its good functional properties, silver catfish skin gelatin may be useful in various food applications such as soups, sauces and gravies.
    Matched MeSH terms: Solubility
  16. Sa'don NA, Rahim AA, Ibrahim MNM, Brosse N, Hussin MH
    Int J Biol Macromol, 2017 Nov;104(Pt A):251-260.
    PMID: 28602987 DOI: 10.1016/j.ijbiomac.2017.06.038
    Lignin extracted from oil palm fronds (OPF) underwent chemical modification by incorporating m-cresol into the lignin matrix. This study reports on the physicochemical properties and antioxidant activity of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) and the modified autohydrolyzed ethanol organosolv lignin (AHC EOL). The lignin samples were analyzed by FTIR, 1H and 13C NMR spectroscopy, 2D NMR: HSQC spectroscopy, CHN analysis, molecular weight distribution analysis; GPC and thermal analysis; DSC and TGA. The lignin modification has reduced the hydrophobicity of its complex structure by providing better quality lignin with smaller fragments and higher solubility rate in water (DAHCEOL: 42%>DAHEOL: 25%). It was revealed that the modification of lignin has improved their structural and antioxidant properties, thus venture their possible applications.
    Matched MeSH terms: Solubility
  17. Sheikhy Narany T, Aris AZ, Sefie A, Keesstra S
    Sci Total Environ, 2017 Dec 01;599-600:844-853.
    PMID: 28501010 DOI: 10.1016/j.scitotenv.2017.04.171
    The conversions of forests and grass land to urban and farmland has exerted significant changes on terrestrial ecosystems. However, quantifying how these changes can affect the quality of water resources is still a challenge for hydrologists. Nitrate concentrations can be applied as an indicator to trace the link between land use changes and groundwater quality due to their solubility and easy transport from their source to the groundwater. In this study, 25year records (from 1989 to 2014) of nitrate concentrations are applied to show the impact of land use changes on the quality of groundwater in Northern Kelantan, Malaysia, where large scale deforestation in recent decades has occurred. The results from the integration of time series analysis and geospatial modelling revealed that nitrate (NO3-N) concentrations significantly increased with approximately 8.1% and 3.89% annually in agricultural and residential wells, respectively, over 25years. In 1989 only 1% of the total area had a nitrate value greater than 10mg/L; and this value increased sharply to 48% by 2014. The significant increase in nitrate was only observed in a shallow aquifer with a 3.74% annual nitrate increase. Based on the result of the Autoregressive Integrated Moving Average (ARIMA) model the nitrate contamination is expected to continue to rise by about 2.64% and 3.9% annually until 2030 in agricultural and residential areas. The present study develops techniques for detecting and predicting the impact of land use changes on environmental parameters as an essential step in land and water resource management strategy development.
    Matched MeSH terms: Solubility
  18. Kaleemullah M, Jiyauddin K, Thiban E, Rasha S, Al-Dhalli S, Budiasih S, et al.
    Saudi Pharm J, 2017 Jul;25(5):770-779.
    PMID: 28725150 DOI: 10.1016/j.jsps.2016.10.006
    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor (f2) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p-values of 1.00 and 0.995 respectively.
    Matched MeSH terms: Solubility
  19. Babar ZM, Azizi WM, Ichwan SJ, Ahmed QU, Azad AK, Mawa I
    Nat Prod Res, 2019 Aug;33(15):2266-2270.
    PMID: 30037274 DOI: 10.1080/14786419.2018.1493587
    The current study provides a way of extraction for both active NSO and WSE from Nigella sativa seeds using 98% methanol. About 1 kg of ground seeds was macerated by 1:2.5 w/v (g/mL) for 72 hours. After rotary evaporation and 7 days of continuous drying and chilling at 50 and 4 °C, NSO and WSE were obtained at the same instant. Solubility tests of 24 solvents and 11 thin layer chromatographic analyses while 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging assay of NSO (73.66) , WSE (33.32) and NSO + WSE (78.22) against ascorbic acid (IC50 = 4.28 mg/mL) was performed. WSE was found to be highly soluble in water and 5% NaOH exhibiting the same Rf value of 0.95 for EtOH:DMSO (9:1) against the honey. WSE has revealed more than twofold higher anti-oxidant activity than others. Formulation of WSE with Tualang honey may provide better targeted hydrophilic drug delivery systems.
    Matched MeSH terms: Solubility
  20. Hosseini S, Han SJ, Arponwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Jul 26;8(1):11273.
    PMID: 30050161 DOI: 10.1038/s41598-018-29630-0
    Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0-50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5-10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5-10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.
    Matched MeSH terms: Solubility
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links