METHODS: Data were used from children and adolescents aged 8-19 years in six pooled childhood cohorts (19,261 participants, collected between 1972 and 2010) to create reference standards for fasting glucose and total cholesterol. Using the models for glucose and cholesterol as well as previously published reference standards for body mass index and blood pressure, clinical cardiovascular health charts were developed. All models were estimated using sex-specific random-effects linear regression, and modeling was performed during 2020-2022.
RESULTS: Models were created to generate charts with smoothed means, percentiles, and standard deviations of clinical cardiovascular health for each year of childhood. For example, a 10-year-old girl with a body mass index of 16 kg/m2 (30th percentile), blood pressure of 100/60 mm Hg (46th/50th), glucose of 80 mg/dL (31st), and total cholesterol of 160 mg/dL (46th) (lower implies better) would have a clinical cardiovascular health percentile of 62 (higher implies better).
CONCLUSIONS: Clinical cardiovascular health charts based on pediatric data offer a standardized approach to express clinical cardiovascular health as an age- and sex-standardized percentile for clinicians to assess cardiovascular health in childhood to consider preventive approaches at early ages and proactively optimize lifetime trajectories of cardiovascular health.
Methods: A prospective, observational single-centre study was conducted where all 504 cases that were consecutively admitted for pneumonia were enrolled. Blood and sputum samples obtained were used to identify pathogens using standard microbiological culture methods. The urine samples collected were tested using the ImmunocatchTMLegionella immunochromatographic (ICT) urine antigen test.
Results: A microbiological diagnosis was only achieved in 104 cases (20.6%) and a Gram-negative infection predominance was observed. Culture-positive cases required longer hospitalisation (8.46 days versus 5.53 days; P < 0.001) and the higher usage of antipseudomonal antibiotics (23.1% versus 8.3%; P < 0.001). Only 3 cases (0.6%) were diagnosed with Legionella pneumonia.
Conclusion: The local pathogen distribution is diverse compared to other regions. Culture-negative pneumonia is common and significantly differs from culture-positive pneumonia. Legionella pneumophila serotype 1 is not a common cause of pneumonia and LUAT did not help demystify the cause of culture-negative pneumonia.
METHODS: Xenical 120 mg capsules (Roche, Basel, Switzerland) were used as reference material. Generic products were from India, Malaysia, Argentina, Philippines, Uruguay, and Taiwan. Colour, melting temperature, crystalline form, particle size, capsule fill mass, active pharmaceutical ingredient content, amount of impurities, and dissolution were compared. Standard physical and chemical laboratory tests were those developed by Roche for Xenical.
RESULTS: All nine generic products failed the Xenical specifications in four or more tests, and two generic products failed in seven tests. A failure common to all generic products was the amount of impurities present, mostly due to different by-products, including side-chain homologues not present in Xenical. Some impurities were unidentified. Two generic products tested failed the dissolution test, one product formed a capsule-shaped agglomerate on storage and resulted in poor (=15%) dissolution. Six generic products were powder formulations.
CONCLUSIONS: All tested generic orlistat products were pharmaceutically inferior to Xenical. The high levels of impurities in generic orlistat products are a major safety and tolerability concern.