Displaying publications 1 - 20 of 155 in total

  1. Baby R, Hussein MZ
    Materials (Basel), 2020 Jun 09;13(11).
    PMID: 32526876 DOI: 10.3390/ma13112627
    Heavy metal ion contamination in water poses a significant risk to human health as well as to the environment. Millions of tons of agricultural wastes are produced from oil palm plantations which are challenging to manage. In this study, we converted palm kernel shells (PKS) from a palm oil plantation into activated carbon (AC) having a surface area of 1099 m2/g using phosphoric acid as an activator. The prepared material was characterized using BET, XRD, Raman, FESEM and FTIR analyses. The AC was applied for the treatment of heavy-metal-contaminated water, and different parameters; the pH, adsorbent dosage, contact time and metal ion concentrations were varied to determine the optimal conditions for the metal ion adsorption. Different kinetic models; the zeroth, first-order and second-order, and Freundlich and Langmuir isotherm models were used to determine the mechanism of metal ion adsorption by the AC. Under the optimized conditions, Cr6+ and Pb2+ were removed completely, while Zn2+ and Cd2+ were more than 80% removed. This is a greener approach in which an agricultural waste, PKS is converted into a useful product, activated carbon and subsequently applied for the treatment of heavy metal-contaminated water.
  2. Saifullah B, Hussein MZ
    Int J Nanomedicine, 2015;10:5609-33.
    PMID: 26366081 DOI: 10.2147/IJN.S72330
    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.
  3. Maluin FN, Hussein MZ
    Molecules, 2020 Apr 01;25(7).
    PMID: 32244664 DOI: 10.3390/molecules25071611
    The rise in the World's food demand in line with the increase of the global population has resulted in calls for more research on the production of sustainable food and sustainable agriculture. A natural biopolymer, chitosan, coupled with nanotechnology could offer a sustainable alternative to the use of conventional agrochemicals towards a safer agriculture industry. Here, we review the potential of chitosan-based agronanochemicals as a sustainable alternative in crop protection against pests, diseases as well as plant growth promoters. Such effort offers better alternatives: (1) the existing agricultural active ingredients can be encapsulated into chitosan nanocarriers for the formation of potent biocides against plant pathogens and pests; (2) the controlled release properties and high bioavailability of the nanoformulations help in minimizing the wastage and leaching of the agrochemicals' active ingredients; (3) the small size, in the nanometer regime, enhances the penetration on the plant cell wall and cuticle, which in turn increases the argochemical uptake; (4) the encapsulation of agrochemicals in chitosan nanocarriers shields the toxic effect of the free agrochemicals on the plant, cells and DNA, thus, minimizing the negative impacts of agrochemical active ingredients on human health and environmental wellness. In addition, this article also briefly reviews the mechanism of action of chitosan against pathogens and the elicitations of plant immunity and defense response activities of chitosan-treated plants.
  4. Mustafa IF, Hussein MZ
    Nanomaterials (Basel), 2020 Aug 17;10(8).
    PMID: 32824489 DOI: 10.3390/nano10081608
    Declines in crop yield due to pests and diseases require the development of safe, green and eco-friendly pesticide formulations. A major problem faced by the agricultural industry is the use of conventional agrochemicals that contribute broad-spectrum effects towards the environment and organisms. As a result of this issue, researchers are currently developing various pesticide formulations using different nanotechnology approaches. The progress and opportunities in developing nanoemulsions as carriers for plant protection or nanodelivery systems for agrochemicals in agricultural practice have been the subject of intense research. New unique chemical and biologic properties have resulted in a promising pesticide nanoformulations for crop protection. These innovations-particularly the nanoemulsion-based agrochemicals-are capable of enhancing the solubility of active ingredients, improving agrochemical bioavailability, and improving stability and wettability properties during the application, thus resulting in better efficacy for pest control and treatment. All of these-together with various preparation methods towards a greener and environmentally friendly agrochemicals-are also discussed and summarized in this review.
  5. Ramli M, Hussein MZ, Yusoff K
    Int J Nanomedicine, 2013;8:297-306.
    PMID: 23345976 DOI: 10.2147/IJN.S38858
    A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells.
  6. Hussein MZ, Zainal Z, Yaziz I, Beng TC
    PMID: 11413839
    Layered double hydroxide of Mg-Al-carbonate system (MACH) was prepared and its heat-treated product (MACHT) was obtained by calcination at 500 degrees C. The resulting materials were used as an adsorbent for removal of color from synthetic textile wastewater (STW) and textile wastewater (TWW). Batch kinetic study showed that these materials are an efficient adsorbent for textile dye. The maximum adsorption capacities between 16 to 32 mg of dyes per g of adsorbent was obtained by fitting the adsorption data to the Langmuir adsorption Isotherm. It was found that the adsorption capacity of MACHT is higher than MACH.
  7. Hussein MZ, Nasir NM, Yahaya AH
    J Nanosci Nanotechnol, 2008 Nov;8(11):5921-8.
    PMID: 19198327
    Metanilate-layered double hydroxide nanohybrid compound was synthesized for controlled release purposes through co-precipitation method of the metal cations and organic anion. The effect of various divalent metal cations (M2+), namely Zn2+, Mg2+ and Ca2+ on the formation of metanilate-LDH nanohybrids, in which metanilate anion was intercalated into three different layered double hydroxide (LDH) systems; Zn-Al, Mg-Al and Ca-Al were investigated. The syntheses were carried out with M2+ to Al3+ initial molar ratio, R of 4. The pH of the mother liquor was maintained at pH 7.5 and 10 during the synthesis, and the resulting mixture was aged at around 70 degrees C for about 18 h. The intercalation of metanilate anion into the host was found to be strongly influenced by the M2+ that formed the inorganic metal hydroxide layers. Under our experimental condition, the formation of the nanohybrid materials was found to be more feasible for the Zn-Al than for the other two systems, in which the former showed well-ordered layered organic-inorganic nanohybrid structure with good crystallinity. Intercalation is confirmed by the expansion of the interlayer spacing to about 15-17 A when metanilate was introduced into the interlamellae of Zn-Al LDHs. In addition, CHNS and FTIR analyses also support that metanilate anion has been successfully intercalated into the interlamellae of the inorganic LDH. Apart from M2+, this study also shows that the initial pH of the mother liquor plays an important role in determining the physicochemical properties of the resulting nanohybrids, especially the mole fraction of the Zn2+ substituted by the Al3+ ion in the LDH inorganic sheets which in turn controlled the loading percentage of the organic anion, surface properties and the true density. Preliminary study shows that LDH can be used to host beneficial guests, active agent with controlled release capability of the guests. Generally the overall process is governed by pseudo second order kinetic but for the first 180 min, the release process can be slightly better described by parabolic diffusion than the other models.
  8. Baby R, Saifullah B, Hussein MZ
    Nanoscale Res Lett, 2019 Nov 11;14(1):341.
    PMID: 31712991 DOI: 10.1186/s11671-019-3167-8
    Nanotechnology is an advanced field of science having the ability to solve the variety of environmental challenges by controlling the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic nature, high surface area, easier biodegradation, and particularly useful environmental remediation. Heavy metal contamination in water is a major problem and poses a great risk to human health. Carbon nanomaterials are getting more and more attention due to their superior physicochemical properties that can be exploited for advanced treatment of heavy metal-contaminated water. Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene oxide, and activated carbon have great potential for removal of heavy metals from water because of their large surface area, nanoscale size, and availability of different functionalities and they are easier to be chemically modified and recycled. In this article, we have reviewed the recent advancements in the applications of these carbon nanomaterials in the treatment of heavy metal-contaminated water and have also highlighted their application in environmental remediation. Toxicological aspects of carbon-based nanomaterials have also been discussed.
  9. Baby R, Saifullah B, Hussein MZ
    Sci Rep, 2019 Dec 12;9(1):18955.
    PMID: 31831850 DOI: 10.1038/s41598-019-55099-6
    Heavy metal contamination in water causes severe adverse effects on human health. Millions of tons of kernel shell are produced as waste from oil palm plantation every year. In this study, palm oil kernel shell (PKS), an agricultural waste is utilized as effective adsorbent for the removal of heavy metals, namely; Cr6+, Pb2+, Cd2+ and Zn2+ from water. Different parameters of adsorptions; solution pH, adsorbent dosage, metal ions concentration and contact time were optimized. The PKS was found to be effective in the adsorption of heavy metal ions Cr6+, Pb2+, Cd2+ and Zn2+ from water with percentage removal of 98.92%, 99.01%, 84.23% and 83.45%, respectively. The adsorption capacities for Cr6+, Pb2+, Cd2+ and Zn2+ were found to be 49.65 mg/g, 43.12 mg/g, 49.62 mg/g and 41.72 mg/g respectively. Kinetics of adsorption process were determined for each metal ion using different kinetic models like the pseudo-first order, pseudo-second order and parabolic diffusion models. For each metal ion the pseudo-second order model fitted well with correlation coefficient, R2 = 0.999. Different isotherm models, namely Freundlich and Langmuir were applied for the determination of adsorption interaction between metal ions and PKS. Adsorption capacity was also determined for each of the metal ions. PKS was found to be very effective adsorbent for the treatment of heavy metal contaminated water and short time of two hours is required for maximum adsorption. This is a comprehensive study almost all the parameters of adsorptions were studied in detail. This is a cost effective and greener approach to utilize the agricultural waste without any chemical treatment, making it user friendly adsorbent.
  10. Tan JM, Foo JB, Fakurazi S, Hussein MZ
    Beilstein J Nanotechnol, 2015;6:243-53.
    PMID: 25671168 DOI: 10.3762/bjnano.6.23
    This work explores the potential use of commercially obtained, carboxylated, single-walled carbon nanotubes (SWCNT-COOH) as nanocarriers for the antiparkinson drug, levodopa (LD). The resulting nanohybrid was characterized using materials characterization methods including Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis, UV-vis spectroscopy and scanning electron microscopy. The results showed that SWCNT-COOH were able to form supramolecular complexes with LD via a π-π stacking interaction and exhibited favourable, slow, sustained-release characteristics as a drug carrier with a release period over more than 20 h. The results obtained from the drug release studies of LD at different pH values showed that the LD-loaded nanohybrid is pH activated. The release kinetics of LD from SWCNT-COOH were well-described by a pseudo-second-order kinetic model. A cytotoxicity assay of the synthesized nanohybrid was also carried out in PC12 cell lines (a widely used, in vitro Parkinson's model for neurotoxicity studies) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in order to investigate their possible effects on normal neuronal cells in vitro. It was found that the synthesized nanohybrid did not compromise the cell viability and the PC12 cells remained stable throughout the experiments up to 72 h after treatment.
  11. Mohd Bakhori N, Yusof NA, Abdullah AH, Hussein MZ
    Biosensors (Basel), 2013 Dec;3(4):419-28.
    PMID: 25587406 DOI: 10.3390/bios3040419
    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.
  12. Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ
    Drug Des Devel Ther, 2014;8:2333-43.
    PMID: 25429205 DOI: 10.2147/DDDT.S70650
    Among the array of nanomaterials, carbon nanotubes have shown great potential as drug carriers in the field of nanomedicine, owing to their attractive physicochemical structure, which facilitates functionalization of therapeutic molecules onto their external walls or being encapsulated inside the tubes. The aim of this preliminary study was to formulate betulinic acid (BA), a poorly water-soluble drug, in oxidized multiwalled carbon nanotubes (MWCNT-COOH) for enhanced delivery efficiency into cancer cells with reduced cytotoxicity. The synthesized MWCNT-BA nanocomposite was characterized using ultraviolet-visible, Fourier transform infrared, thermogravimetric analysis, powder X-ray diffraction, and field emission scanning electron microscopy techniques. The loading of BA in MWCNT-COOH nanocarrier was estimated to be about 14.5%-14.8% (w/w), as determined by ultraviolet-visible and thermogravimetric analysis. Fourier transform infrared study shows that the peaks of the resulting MWCNT-BA nanocomposite correlate to the characteristic functional groups of BA and MWCNT-COOH. The powder X-ray diffraction results confirmed that the tubular structures of MWCNT-COOH were not affected by the drug loading mechanism of BA. The release profiles demonstrated that approximately 98% of BA could be released within 22 hours by phosphate-buffered saline solution at pH 7.4 compared with about 22% within 24 hours at pH 4.8. The biocompatibility studies revealed that MWCNT-BA at concentrations <50μg/mL expressed no cytotoxicity effects for mouse embryo fibroblast cells after 72 hours of treatment. The anticancer activity of MWCNT-BA was observed to be more sensitive to human lung cancer cell line when compared with human liver cancer cell line, with half maximal inhibitory concentration values of 2.7 and 11.0μg/mL, respectively. Our findings form a fundamental platform for further investigation of the MWCNT-BA formulation against different types of cancer cells.
  13. Kura AU, Hussein MZ, Fakurazi S, Arulselvan P
    Chem Cent J, 2014;8(1):47.
    PMID: 25177361 DOI: 10.1186/s13065-014-0047-2
    The production of layered double hydroxide(LDH) nanocomposite as an alternative drug delivery system against various ailments is on the increase. Their toxicity potential is usually dose and time dependent with particle sizes, shapes and surface charge playing some role both in the in vitro and in vivo studies. The reticular endothelial system of especially the liver and spleen were shown to sequestrate most of these nanocomposite, especially those with sizes greater than 50 nm. The intracellular drug delivery by these particles is mainly via endocytotic pathways aided by the surface charges in most cases. However, structural modification of these nanocomposite via coating using different types of material may lower the toxicity where present. More importantly, the coating may serve as targeting ligand hence, directing drug distribution and leading to proper drug delivery to specific area of need; it equally decreases the unwanted nanocomposite accumulation in especially the liver and spleen. These nanocomposite have the advantage of wider bio-distribution irrespective of route of administration, excellent targeted delivery potential with ease of synthetic modification including coating.
  14. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S
    ScientificWorldJournal, 2014;2014:104246.
    PMID: 24782658 DOI: 10.1155/2014/104246
    We incorporated anti-Parkinsonian drug, levodopa (dopa), in Zn/Al-LDH by coprecipitation method to form dopa-LDH nanocomposite. Further coating of Tween-80 on the external surfaces of dopa-LDH nanocomposite was achieved through the oxygen of C=O group of Tween-80 with the layer of dopa-LDH nanocomposite. The final product is called Tween-dopa-LDH nanocomposite. The X-ray diffraction indicates that the Tween-dopa-LDH nanocomposite was formed by aggregation structure. From the TGA data, the Tween-80 loading on the surface of LDH and dopa-LDH was 8.6 and 7.4%, respectively. The effect of coating process on the dopa release from Tween-dopa-LDH nanocomposite was also studied. The release from Tween-dopa-LDH nanocomposite shows slower release compared to the release of the drug from dopa-LDH nanocomposite as done previously in our study, presumably due to the retarding shielding effect. The cell viability study using PC12 showed improved viability with Tween-80 coating on dopa-LDH nanocomposite as studied by mitochondrial dehydrogenase activity (MTT assay).
  15. Barahuie F, Hussein MZ, Fakurazi S, Zainal Z
    Int J Mol Sci, 2014;15(5):7750-86.
    PMID: 24802876 DOI: 10.3390/ijms15057750
    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.
  16. Sheikh Mohd Ghazali SA, Hussein MZ, Sarijo SH
    Nanoscale Res Lett, 2013;8(1):362.
    PMID: 23968197 DOI: 10.1186/1556-276X-8-362
    A new layered organic-inorganic nanohybrid material, zinc-aluminum-3,4-dicholorophenoxyacetate (N3,4-D) in which an agrochemical, 3,4-dichlorophenoxyacetic acid (3,4-D), is intercalated into zinc-aluminum-layered double hydroxide (ZAL), was synthesized by coprecipitation method. A well-ordered nanomaterial was formed with a percentage loading of 53.5% (w/w). Due to the inclusion of 3,4-D, basal spacing expanded from 8.9 Å in ZAL to 18.7 Å in N3,4-D. The Fourier transform infrared study shows that the absorption bands of the resulting nanohybrid composed of both the 3,4-D and ZAL further confirmed the intercalation episode. Thermal analysis shows that ZAL host enhances the thermal stability of 3,4-D. Controlled-release experiment shows that the release of 3,4-D in the aqueous media is in the order of phosphate > carbonate > sulfate > chloride. These studies demonstrate the successful intercalation of the 3,4-D and its controlled release property in various aqueous media.
  17. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA
    Molecules, 2013 May 28;18(6):6269-80.
    PMID: 23760028 DOI: 10.3390/molecules18066269
    Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO₃ relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9-35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.
  18. Saifullah B, Hussein MZ, Hussein Al Ali SH
    Int J Nanomedicine, 2012;7:5451-63.
    PMID: 23091386 DOI: 10.2147/IJN.S34996
    Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is notorious for its lethality to humans. Despite technological advances, the tubercle bacillus continues to threaten humans. According to the World Health Organization's 2011 global report on TB, 8.8 million cases of TB were reported in 2010, with a loss of 1.7 million human lives. As drug-susceptible TB requires long-term treatment of between 6 and 9 months, patient noncompliance remains the most important reason for treatment failure. For multidrug-resistant TB, patients must take second-line anti-TB drugs for 18-24 months and many adverse effects are associated with these drugs. Drug-delivery systems (DDSs) seem to be the most promising option for advancement in the treatment of TB. DDSs reduce the adverse effects of drugs and their dosing frequency as well as shorten the treatment period, and hence improve patient compliance. Further advantages of these systems are that they target the disease area, release the drugs in a sustained manner, and are biocompatible. In addition, targeted delivery systems may be useful in dealing with extensively drug-resistant TB because many side effects are associated with the drugs used to cure the disease. In this paper, we discuss the DDSs developed for the targeted and slow delivery of anti-TB drugs and their possible advantages and disadvantages.
  19. Hussein MZ, Rahman NS, Sarijo SH, Zainal Z
    Int J Mol Sci, 2012;13(6):7328-42.
    PMID: 22837696 DOI: 10.3390/ijms13067328
    Herbicides, namely 4-(2,4-dichlorophenoxy) butyrate (DPBA) and 2-(3-chlorophenoxy) propionate (CPPA), were intercalated simultaneously into the interlayers of zinc layered hydroxide (ZLH) by direct reaction of zinc oxide with both anions under aqueous environment to form a new nanohybrid containing both herbicides labeled as ZCDX. Successful intercalation of both anions simultaneously into the interlayer gallery space of ZLH was studied by PXRD, with basal spacing of 28.7 Å and supported by FTIR, TGA/DTG and UV-visible studies. Simultaneous release of both CPPA and DPBA anions into the release media was found to be governed by a pseudo second-order equation. The loading and percentage release of the DPBA is higher than the CPPA anion, which indicates that the DPBA anion was preferentially intercalated into and released from the ZLH interlayer galleries. This work shows that layered single metal hydroxide, particularly ZLH, is a suitable host for the controlled release formulation of two herbicides simultaneously.
  20. Yasin Y, Ismail NM, Hussein MZ, Aminudin N
    J Biomed Nanotechnol, 2011 Jun;7(3):486-8.
    PMID: 21830495
    A drug-inorganic nanostructured material involving pharmaceutically active compound lawsone intercalated Zn-Al layered double hydroxides (Law-LDHs) with Zn/AI = 4 has been assembled by co-precipitation and ion exchange methods. Powder X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) analysis indicate a successful intercalation of lawsone between the layers of layered double hydroxides. It suggests that layered double hydroxides may have application as the basis of a drug delivery system.
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links