Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Olatunji MA, Khandaker MU, Nwankwo VUJ, Idris AM
    Radiat Environ Biophys, 2022 Nov;61(4):597-608.
    PMID: 36175773 DOI: 10.1007/s00411-022-00993-3
    Proper documentation of baseline radiation data of different environments is an important step toward adequate environmental monitoring, and it provides quick means to quantitatively check and determine possible radionuclide contamination by anthropogenic sources. Besides, such documentation is useful for decision making processes, assessment of dose rates to the public, epidemiological studies, and environmental regulations. This review summarizes the results of studies conducted on radioactivity in Nigerian environments. For most soil samples, the levels of radioactivity are well within the world averages of 33, 45, and 420 Bq kg-1 for 226Ra, 232Th and 40K, respectively. Other soil samples from regions such as Abeokuta in the southwest, and Jos in the northcentral have been described as high background radiation areas with radioactivity values comparable with those obtained from known high background radiation areas such as the Odisha (formerly Orissa) coast in India (with values reported as 350, 2,825, and 180 Bq kg-1 for 238U/226Ra, 232Th, and 40K, respectively). In some parts of Nigeria, surface and underground water sources used for drinking and other purposes also present elevated levels of 226Ra above the world range of 0.01 to 0.1 Bq l-1 and the tolerable levels recommended by the World Health Organization and U.S. Environmental Protection Agency. Corresponding radiation doses due to measured radioactivities from different environments were estimated and compared with those reported in similar studies around the world. More so, the human and environmental health hazards that might be associated with the reported radioactivity in different environmental settings are discussed. The present report is expected to support authorities in developing appropriate regulations to protect the public from radiation exposure arising from environmental radioactivity. The report also examines other areas of consideration for future studies to ensure adequate radiation monitoring in Nigeria.
  2. Rakib MRJ, Ertaş A, Walker TR, Rule MJ, Khandaker MU, Idris AM
    Mar Pollut Bull, 2022 Jan;174:113246.
    PMID: 34952406 DOI: 10.1016/j.marpolbul.2021.113246
    Macro-sized marine litter (>2.5 cm) was collected, characterized, and enumerated along the Cox's Bazar Coast, Bangladesh. Marine litter abundance was converted to density (number of items/m2). Beach cleanliness was evaluated using the clean-coast index (CCI). Plastic polythene bags were the most abundant litter items, followed by plastic cups. Total marine litter abundance was 54,401 ± 184 items. Major sources of marine litter were from tourism, fishery and residential activities. Of 10 sites surveyed, two were classified as dirty, two were moderate, four were clean and two were very clean using the CCI. Marine litter pollution along the Cox's Bazar Coast represents a potential threat to coastal and marine environments. This baseline study will help to establish mitigation strategies that are urgently required to reduce marine litter pollution along the Cox's Bazar Coast.
  3. Itas YS, Razali R, Tata S, Kolo M, Osman H, Idris AM, et al.
    Sci Technol Adv Mater, 2023;24(1):2271912.
    PMID: 38024795 DOI: 10.1080/14686996.2023.2271912
    This work investigates the fundamental photocatalytic properties of nitrogen-doped single-walled silicon carbide nanotubes (N-doped SWSiCNTs) for hydrogen evolution for the first time. Investigations of the structural, mechanical, electronic, and optical properties of the studied systems were carried out using popular density functional theory implemented in quantum ESPRESSO and Yambo codes. Analysis of the structural properties revealed high mechanical stability with the 3.6% and 7.4% N-doped SWSiCNT. The calculated band gap of the N-doped SWSiCNT with 3.6% demonstrated a value of 2.56 eV which is within the photocatalytic range of 2.3 eV-2.8 eV. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) potentials of the 3.6% N-doped SWSiCNT also showed good agreement with previous theoretical data. The studied material showed the best photocatalytic performance in both parallel and perpendicular directions by absorbing photons in the visible region. Therefore, the observed structural, mechanical, electronic and optical behaviors demonstrated by the 3.6% N-doped SWSiCNT exposed it as a better photocatalyst for hydrogen production under visible light.
  4. Islam MS, Phoungthong K, Islam ARMT, Ali MM, Ismail Z, Shahid S, et al.
    Mar Pollut Bull, 2022 Dec;185(Pt B):114362.
    PMID: 36410195 DOI: 10.1016/j.marpolbul.2022.114362
    Marine debris is often detected everywhere in the oceans after it enters the marine ecosystems from various sources. Marine litter pollution is a major threat to the marine ecosystem in Bangladesh. A preliminary study was conducted to identify the sources of marine litter (plastics, foamed plastic, clothes, glass, ceramic, metals, paper, and cardboard) along the Bay of Bengal coast. From the observations, the range of abundance of the collected marine litter was 0.14-0.58 items/m2. From the ten sampling sites, the highest amount of marine litter was observed for aluminium cans (3500), followed by plastic bottles (3200). The spatial distribution pattern indicated that all the study areas had beach litter of all types of materials. The present investigation showed that plastics were the dominating pollutants in the marine ecosystem in Bangladesh. The clean-coast index (CCI) value indicated that the Cox's Bazar coast was clean to dirty class. The abundance, distribution, and pollution of marine litter along the coastal belts pose a potential threat to the entire ecosystem. This study will help come up with ways to manage and get rid of marine litter along the coast in an effective way.
  5. Madadi R, Mohamadi S, Rastegari M, Karbassi A, Rakib MRJ, Khandaker MU, et al.
    Sci Rep, 2022 Nov 17;12(1):19736.
    PMID: 36396803 DOI: 10.1038/s41598-022-21242-z
    Rapid industrialization and urbanization have resulted in environmental pollution and unsustainable development of cities. The concentration of 12 potentially toxic metal(loid)s in windowsill dust samples (n = 50) were investigated from different functional areas of Qom city with the highest level of urbanization in Iran. Spatial analyses (ArcGIS 10.3) and multivariate statistics including Principal Component Analysis and Spearman correlation (using STATISTICA-V.12) were adopted to scrutinize the possible sources of pollution. The windowsill dust was very highly enriched with Sb (50 mg/kg) and Pb (1686 mg/kg). Modified degree of contamination (mCd) and the pollution load indices (PLIzone) indicate that windowsill dust in all functional areas was polluted in the order of industrial > commercial > residential > green space. Arsenic, Cd, Mo, Pb, Sb, Cu, and Zn were sourced from a mixture of traffic and industrial activities, while Mn in the dust mainly stemmed from mining activities. Non-carcinogenic health risk (HI) showed chronic exposure of Pb for children in the industrial zone (HI = 1.73). The estimations suggest the possible carcinogenic risk of As, Pb, and Cr in the dust. The findings of this study reveal poor environmental management of the city. Emergency plans should be developed to minimize the health risks of dust to residents.
  6. Abedin MJ, Khandaker MU, Uddin MR, Karim MR, Ahamad MSU, Islam MA, et al.
    Environ Sci Pollut Res Int, 2022 Apr;29(18):27521-27533.
    PMID: 34981371 DOI: 10.1007/s11356-021-17859-8
    The present study focuses on the indiscriminate disposal of personal protective equipment (PPEs) and resulting environmental contamination during the 3rd wave of COVID-19-driven global pandemic in the Chittagong metropolitan area, Bangladesh. Because of the very high rate of infection by the delta variant of this virus, the use of PPEs by the public is increased significantly to protect the ingestion/inhalation of respiratory droplets in the air. However, it is a matter of solicitude that general people throw away the PPEs to the dwelling environment unconsciously. With the increase of inappropriate disposal of PPEs (i.e., mostly the disposable face masks made from plastic microfibers), the possibility of transmission of the virus to the general public cannot be neglected completely. This is because this virus can survive for several days on the inanimate matter like plastics and fibers. At the same time, the result of environmental contamination by microplastic/microfiber has been widespread which eventually creates the worst impact on ecosystems and organisms. The present results may help to increase public perception of the use and subsequent disposal of PPEs, especially the face masks.
  7. Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, et al.
    Saudi J Biol Sci, 2023 Mar;30(3):103561.
    PMID: 36684115 DOI: 10.1016/j.sjbs.2023.103561
    COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
  8. Biswas K, Nazir A, Rahman MT, Khandaker MU, Idris AM, Islam J, et al.
    PLoS One, 2022;17(1):e0261427.
    PMID: 35085239 DOI: 10.1371/journal.pone.0261427
    Cost and safety are critical factors in the oil and gas industry for optimizing wellbore trajectory, which is a constrained and nonlinear optimization problem. In this work, the wellbore trajectory is optimized using the true measured depth, well profile energy, and torque. Numerous metaheuristic algorithms were employed to optimize these objectives by tuning 17 constrained variables, with notable drawbacks including decreased exploitation/exploration capability, local optima trapping, non-uniform distribution of non-dominated solutions, and inability to track isolated minima. The purpose of this work is to propose a modified multi-objective cellular spotted hyena algorithm (MOCSHOPSO) for optimizing true measured depth, well profile energy, and torque. To overcome the aforementioned difficulties, the modification incorporates cellular automata (CA) and particle swarm optimization (PSO). By adding CA, the SHO's exploration phase is enhanced, and the SHO's hunting mechanisms are modified with PSO's velocity update property. Several geophysical and operational constraints have been utilized during trajectory optimization and data has been collected from the Gulf of Suez oil field. The proposed algorithm was compared with the standard methods (MOCPSO, MOSHO, MOCGWO) and observed significant improvements in terms of better distribution of non-dominated solutions, better-searching capability, a minimum number of isolated minima, and better Pareto optimal front. These significant improvements were validated by analysing the algorithms in terms of some statistical analysis, such as IGD, MS, SP, and ER. The proposed algorithm has obtained the lowest values in IGD, SP and ER, on the other side highest values in MS. Finally, an adaptive neighbourhood mechanism has been proposed which showed better performance than the fixed neighbourhood topology such as L5, L9, C9, C13, C21, and C25. Hopefully, this newly proposed modified algorithm will pave the way for better wellbore trajectory optimization.
  9. Itas YS, Isah KA, Nuhu AH, Razali R, Tata S, K A N, et al.
    RSC Adv, 2023 Aug 04;13(34):23659-23668.
    PMID: 37564254 DOI: 10.1039/d3ra03838f
    This work investigates the structural, elastic, electronic, and photoabsorption properties of boron- (N-deficient) and nitrogen- (B-deficient) doped single-walled boron nitride nanotube (SWBNNT) for photocatalytic applications for the first time. All calculations of the optimized systems were performed with DFT quantum simulation codes. The results of the structural analysis showed that SWBNNT is stable to both B and N dopants. It was also observed that the photodecomposition activity of the B-doped nanotube improved significantly under the condition of slight compressive stress, while it decreased for the N-doped nanotube. Therefore, N-doped SWBNNT showed poor performance under external pressure. Both B and N-doped systems could narrow the wide band gap of SWBNNT to the photocatalytic region below 3 eV, therefore this material can be used as photocatalysts in water splitting for hydrogen evolution, dye degradation, wastewater treatment, etc. Analysis of the optical properties revealed that B-doped SWBNNT absorbs more photons in the visible range than the N-doped SWBNNT and can therefore be considered as a more efficient photocatalyst. In addition, it was found that all doped nanotubes are anisotropic since the absorption in one direction of nanotube axes is worse than the other.
  10. Islam MS, Al Bakky A, Saikat MSM, Antu UB, Akter R, Roy TK, et al.
    Environ Geochem Health, 2024 Sep 24;46(11):437.
    PMID: 39316128 DOI: 10.1007/s10653-024-02213-x
    The contribution of heavy metals in surface soils by the influences of agro-machinery factories is a significant growing concern. Heavy metals were analyzed by inductively coupled plasma mass spectrometry technique to assess human and ecological risks. The concentrations of Fe, Cd, Cr, Cu, As, Pb, Mn, Ni, and Zn in soil ranged from 18,274-22,652, 2.06-4.92, 24.8-41.9, 126.8-137.5, 9.20-25.2, 17.8-46.1, 114.4-183.1, 86.9-118.1, and 101.6-159.6 mg/kg, respectively. The enrichment factor values of heavy metals were greater than 1.5, suggesting severe anthropogenic activities such as untreated waste discharging, burning of metallic wastes, wear, and tear, and dismantling of old batteries for heavy metals enrichment in studied soil. The contamination factor indicates considerable to very high contamination of heavy metals in soil. Moderate to high ecological risk was observed for analyzed metals which mainly originated from the maintenance and repairing of various engines in the workshop and welding and soldering of metallic substances. The target hazard quotient (THQ) was ranged from 6.99E-04 to 2.21E-01 for adults and 5.59E-03 to 1.82E + 00 for children, respectively; indicating children were more sensitive to heavy metals exposure from soil dust. The carcinogenic risk of As (1.72E-05) exceeded the USEPA acceptable limits indicating cancer risk to the residence. The current emphasized the significance of intensive heavy metals monitoring in surface soils around the agro-machinery areas due to their potential health risks associated with children.
  11. Al-Henhena N, Khalifa SA, Ying RP, Ismail S, Hamadi R, Shawter AN, et al.
    BMC Complement Altern Med, 2015;15(1):419.
    PMID: 26608653 DOI: 10.1186/s12906-015-0926-7
    With cancer being one of the major causes of death around the world, studies are ongoing to find new chemotherapeutic leads. There are common mechanisms for colorectal cancer (CRC) formation. Several are connected with oxidative stress-induced cell apoptosis and others are related to imbalanced homeostasis or intake of drugs/toxins. Plants that have been used for decades in folk and traditional medicine have been accepted as one of the commonest sources of discovered natural agents of cancer chemotherapy and chemoprevention. The aim was to study the antioxidant and chemopreventive effects of Strobilanthes crispus on colorectal cancer formation.
  12. Abedin MJ, Khandaker MU, Uddin MR, Karim MR, Uddin Ahamad MS, Islam MA, et al.
    Chemosphere, 2022 Jun;297:134022.
    PMID: 35202672 DOI: 10.1016/j.chemosphere.2022.134022
    This study investigates the Covid-19 driven indiscriminate disposal of PPE wastes (mostly face mask and medical wastes) in Chittagong metropolitan area (CMA), Bangladesh. Based on the field monitoring, the mean PPE density (PPE/m2± SD) was calculated to be 0.0226 ± 0.0145, 0.0164 ± 0.0122, and 0.0110 ± 0.00863 for July, August, and September 2021, respectively (during the peak time of Covid-19 in Bangladesh). Moreover, gross information on PPE waste generation in the city was calculated using several parameters such as population density, face mask acceptance rate by urban population, total Covid-19 confirmed cases, quarantined and isolated patients, corresponding medical waste generation rate (kg/bed/day), etc. Moreover, the waste generated due to face mask and other PPEs in the CMA during the whole Covid-19 period (April 4, 2020 to September 5, 2021) were calculated to be 64183.03 and 128695.75 tons, respectively. It has been observed that the negligence of general people, lack of awareness about environmental pollution, and poor municipal waste management practices are the root causes for the contamination of the dwelling environment by PPE wastes. As a result, new challenges have emerged in solid waste management, which necessitates the development of an appropriate waste management strategy. The ultimate policies and strategies may help to achieve the SDG goals 3, 6, 11, 12, 13, and 15, and increase public perception on the use and subsequent disposal of PPEs, especially face masks.
  13. Islam MS, Phoungthong K, Ismail Z, Othman IK, Shahid S, Ishak DSM, et al.
    PMID: 36644961 DOI: 10.1080/10934529.2022.2148811
    The spreading of sewage sludge from wastewater treatment plants and various industries arouses the growing interest due to the contamination by trace elements. Sludges were collected from one sewage treatment plant and two industries in Dhaka City, Bangladesh to assess physicochemical parameters and total and fraction content of trace elements like Cr, Ni, Cu, As, Cd, Pb, Fe, Mn and Zn in sludges. We evaluated the bioavailability of theses metals by determining their speciation by sequential extraction, each metal being distributed among five fractions: exchangeable fraction, bound to carbonate fraction, Fe-Mn oxide bound fraction, organic matter bound fraction and residual fractions. We found that all the analyzed sludges had satisfactory properties from an agronomic quality point of view. The average concentration (mg/kg) of trace metals in sludge samples were in the following decreasing order Fe (12807) > Cr (200) > Mn (158) > Zn (132) > Cu (68.2) > Ni (42.5) > Pb (36.4) > As (35.1) > Cd (3.7). The results of the sequential extraction showed that Cr, Ni, Cu, Fe and Mn were largely associated with the residual fraction where As, Cd and Pb was dominantly associated with the exchangeable and carbonate bound fractions and Zn showed a considerable proportion in carbonate bound fraction. These results showed that regulations must take into account the bioavailability with regard to the characteristics of the agricultural soils on which sludge will be spread.
  14. Rakib MRJ, Al Nahian S, Madadi R, Haider SMB, De-la-Torre GE, Walker TR, et al.
    Environ Sci Process Impacts, 2023 May 25;25(5):929-940.
    PMID: 36939043 DOI: 10.1039/d3em00014a
    Microplastic (MP) pollution is a major global issue that poses serious threats to aquatic organisms. Although research on MP pollution has been extensive, the relationship between MPs and water quality parameters in estuarine water systems is unclear. This work studied the spatiotemporal distribution and characteristics of MPs in the Karnaphuli River estuary, Bangladesh. MP abundance was calculated by towing with a plankton net (300 μm mesh size) at three river gradients (up-, mid- and downstream) and the association between physicochemical parameters of water (temperature, pH, salinity, electrical conductivity, total dissolved solids, and dissolved oxygen) and MP distribution patterns was also investigated. Mean MP abundance in water was higher during the wet season (April) (4.33 ± 2.45 items per m3) compared to the dry season (September) (3.65 ± 2.54 items per m3). In descending order, the highest MP abundance was observed downstream (6.60 items per m3) > midstream (3.15 items per m3) > upstream (2.22 items per m3). pH during the wet season (April) and temperature during the dry season (September) were key physicochemical parameters that correlated with river MP abundance (r = -0.74 and 0.74 respectively). Indicating that if the Karnaphuli River water has low pH or high temperature, there is likely to be high MPs present in the water. Most MP particles were film-shaped, white in color, and 1-5 mm in size. Of the six polymers detected, polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and cellulose were predominant, comprising roughly 17-19% each. These results can be used to model MP transport in the freshwater ecosystem of the Karnaphuli River estuary in Bangladesh to help develop future mitigation strategies.
  15. Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, et al.
    Oxid Med Cell Longev, 2022;2022:8741787.
    PMID: 36046682 DOI: 10.1155/2022/8741787
    A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
  16. Islam MS, Islam ARMT, Ismail Z, Ahmed MK, Ali MM, Kabir MH, et al.
    Heliyon, 2023 Nov;9(11):e22692.
    PMID: 38074858 DOI: 10.1016/j.heliyon.2023.e22692
    In the modern world, plastic trash has been recognized as a global issue, and studies on microplastics (MPs) in the marine and inland environments have previously been conducted. Marine ecosystems act as a bio-diverse ecosystem where coral reefs contribute to make a sound living of the coastal people by gathering natural resources. The current study indicates that MPs and heavy metals (HMs) accumulation to biofilm and organic matter through sedimentation, precipitation, adsorption, and desorption that may have potential effect on growth and development of coral reefs in the marine ecosystems. However, the knowledge of distribution, impact, mechanism, degradation, and association mechanisms between MPs and HMs in the natural environment may open a new window for conducting analytical research from an ecological viewpoint. The current study thus summarizes the types of marine samples with the analytical techniques, polymers of MPs, and their impact on corals and other marine biota. This study also identifies existing knowledge gaps and recommends fresh lines of inquiry in light of recent developments in MPs and HMs research on the marine ecosystems. Overall, the present study suggests a sustainable intervention for reducing MPs and HMs from the marine ecosystems by demonstrating their existence in water, sediment, fish, corals, and other biota, and their impending ecotoxicological impacts on the environment and human health. The impacts of MPs and HMs on coral reefs are critically assessed in this study in light of the most recent scientific knowledge, existing laws, and new suggestions to minimize their contamination in the marine ecosystems.
  17. Islam MS, Al Bakky A, Ahmed S, Islam MT, Antu UB, Saikat MSM, et al.
    Food Chem Toxicol, 2024 Nov;193:115005.
    PMID: 39284411 DOI: 10.1016/j.fct.2024.115005
    As a cereal crop, maize ranked third place after wheat and rice in terms of land area coverage for its cultivation, and in Bangladesh, it ranked second place after rice in its production. As the substitution of wheat products, maize has been used widely in baking for human consumption and animal fodder. However, maize grown in this soil around the coal-burning power plant may cause heavy metals uptake that poses a risk to humans. The study was conducted at the maize fields in the Ganges delta floodplain soils of Bangladesh to know the concentration of eight heavy metals (Ni, Cr, Cd, Mn, As, Cu, Zn, and Pb) in soil and maize samples using an inductively coupled plasma mass spectrometer (ICP-MS) and to estimate the risk of heavy metals in maize grains. Mean concentrations of heavy metals (mg/kg) in soil were in decreasing order of Zn (10.12) > Cu (10.02) > Mn (5.48) > Ni (4.95) > Cr (3.72) > As (0.51) > Pb (0.27) > Cd (0.23). The plant tissues showed the descending order of heavy metal concentration as roots > grains > stems > leaves. BCF values for As, Cd, Pb, and Mn in roots were higher than 1.0, indicating considerable accumulation of these elements in maize via roots. Total hazard quotient (ƩTHQ) of heavy metals through maize grain consumption was 3.7E+00 and 3.9E+00 for adults and children, respectively, indicating non-cancer risk to the consumers. Anthropogenic influences contributed to the heavy metals enrichment in the Ganges delta floodplain soils around the thermal plant, and potential risks (non-carcinogenic and carcinogenic) were observed due to the consumption of maize grain cultivated in the study area.
  18. Islam MS, Islam MT, Antu UB, Saikat MSM, Ismail Z, Shahid S, et al.
    Mar Pollut Bull, 2023 Dec;197:115720.
    PMID: 37939519 DOI: 10.1016/j.marpolbul.2023.115720
    Safe levels of heavy metals in the surface water and sediment of the eastern Bay of Bengal coast have not been universally established. Current study characterized heavy metals such as arsenic (As), chromium (Cr), cadmium (Cd) and lead (Pb) in surface water and sediments of the most important fishing resource at the eastern Bay of Bengal coast, Bangladesh. Both water and sediment samples were analyzed using inductively coupled plasma mass spectrometer. Considering both of the seasons, the mean concentrations of Cr, As, Cd, and Pb in water samples were 33.25, 8.14, 0.48, and 21.14 μg/L, respectively and in sediment were 30.47, 4.48, 0.20, and 19.98 mg/kg, respectively. Heavy metals concentration in water samples surpassed the acceptable limits of usable water quality, indicating that water from this water resource is not safe for drinking, cooking, bathing, and any other uses. Enrichment factors also directed minor enrichment of heavy metals in sediment of the coast. Other indexes for ecological risk assessment such as pollution load index (PLI), contamination factor (CF), geoaccumulation index (Igeo), modified contamination degree (mCd), and potential ecological risk index (PERI) also indicated that sediment of the coastal watershed was low contamination. In-depth inventorying of heavy metals in both water and sediment of the study area are required to determine ecosystem health for holistic risk assessment and management.
  19. Haque KS, Islam MS, Ahmed S, Rahman MZ, Hemy DH, Islam MT, et al.
    Food Chem Toxicol, 2024 Mar 11.
    PMID: 38467293 DOI: 10.1016/j.fct.2024.114580
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
  20. Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, et al.
    Int J Mol Sci, 2021 Nov 23;22(23).
    PMID: 34884440 DOI: 10.3390/ijms222312638
    Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links